

White Paper

Release date: January 16th, 2023

Version: Full, v2.1 

© ByteNite Inc., 2023 www.bytenite.com

http://www.bytenite.com

© ByteNite Inc., 2023 www.bytenite.com

Table of Contents

1. State Of The Art	
1

1.1. Grid vs. Cloud Computing	
1

1.2. Grid Computing Today	
3

1.3. Fact	
5

2. What is ByteNite	
7

2.1. Innovation	
8

2.2. Business Model	
9

2.3. Glossary	
10

3. Core System	
12

3.1. Architecture	
12

3.2. Workflows	
14

3.3. Business Logic	
21

Bibliography	
37

Mathematical Appendix	 40

 II

http://www.bytenite.com

© ByteNite Inc., 2023 www.bytenite.com

Bookmarks

Figure 1 — CPU Mark, 2004 to 2022 
Figure 2 — Architecture diagram 
Figure 3 — Job submission workflow 
Figure 4 — Task processing workflow 
Figure 5 — Election of eligible devices 
Figure 6 — Capacity pools 
Figure 7 — Pool queues (1) 
Figure 8 — Pool queues (2) 
Figure 9 — Fault response workflow

Table 1 — ByteNite’s glossary 
Table 2 — Grid state’s parameters (1) 
Table 3 — Grid state’s parameters (2) 
Table 4 — Job specification (1) 
Table 5 — Job specification (2) 
Table 6 — Job preferences 
Table 7 — Capacity score’s components 
Table 8 — Fault rate’s inputs 
Table 9 — Threshold flags

Equation 1 — Capacity score’s formula 
Equation 2 — Fault rate’s formula 
Equation 3 — Repechage lottery’s formula

Algorithm 1 — Creation of the ByteRank 
Algorithm 2 — Creation of capacity pools 

 III

http://www.bytenite.com

© ByteNite Inc., 2023 www.bytenite.com

About the author

Fabio Caironi graduated from the University of Milan in 2019
with a degree in mathematics and a discussion on The
Radon-Nikodym theorem: applications on the existence of
conditional probability. He attended the two-year Master’s
Degree course in Data Science and Economics at University
of Milan, where he could refine his knowledge in topics of
economic theory applied to data, machine learning, data
management technologies, cloud environments, decision
theory under uncertainty conditions and financial time series.
His research focus covers machine learning techniques,
distributed computing systems, healthcare and financial data
analysis, and video technologies. In 2020 he co-authored a
software publication on the real-time tracking and modeling of the covid-19 outbreak in Italy,
dubbed disCOVIDer19. In 2021 he founded ByteNite, a commercial grid computing project
exposing high-throughput applications like video encoding, machine learning, and graphics
rendering. In 2021 he filed a patent application for an efficient task-scheduling method in a
distributed computing system. As the company’s CEO, he currently leads the project and the
team, and has moved the product from idea stage to a market-ready beta.

Acknowledgments

I would like to thank all the people that made this project possible from its genesis in May
2021 to date. I am grateful for their passion and commitment in their daily work as well as in
their unsolicited contributions.

Thanks to Ksenia Security S.p.A., for their investment and their friendly partnership throughout
all 2022, and the interesting gatherings and exquisite Italian dinners we had all together.

Thanks to Raffaele Di Crosta and Giorgio Finaurini for their solid endorsement in this project
and their continued advice and support as board members.

Thanks to ByteNite’s head of development Niccolò Castelli, for turning this paper into an
operating grid computing system with care and patience, and thanks to all the staff that
worked on the product. They’ve all been essential gears of our system!

FABIO CAIRONI

CEO & Founder, ByteNite Inc.

 IV

http://www.bytenite.com

© ByteNite Inc., 2023 www.bytenite.com

Summary

This White Paper describes in full detail a model for a new commercial grid computing
implementation called “ByteNite”. I open the Paper with the state of the art of the distributed
computing models, including an overview of cloud and grid computing, their commonalities
and history, and how they are topical in today’s world (§1. State Of The Art). I build the
foundations of our work through a critical insight that triggers powerful implications in
connection with the current technologies: the availability of a gigantic computing capacity
inside worldwide consumers’ and businesses’ devices, enhanced by the cloud computing
model (§1.3. Fact). I address the new proposed model through a description of the system, its
overall operation, the underlying business concepts, and the innovative value proposition (§2.
What Is ByteNite). I then dive into its architecture and workflow design, delineating its
structure, key features, and the chronological phases of its activity (§3. Core System). The
paper then reveals the main algorithm running in the core system and its inputs. This last
section (§3.3. Business Logic) includes all the relevant details about how does ByteNite
manage the workload, including the type of information collected from the workers and the
users, the creation of specific grid indexes, a scheduling algorithm, a distribution process, and
a fault tolerance mechanism. 

 V

http://www.bytenite.com

© ByteNite Inc., 2023 www.bytenite.com

Intellectual Property Notice

ByteNite Inc., a US corporation with offices at 708 Long Bridge Street, San Francisco (CA), is
the sole owner of the white paper and all its contents. The white paper and its contents,
including but not limited to the business idea, technological context, workflows, architecture,
algorithms, economic and business model, and any inventions described in the paper, are
the property of ByteNite Inc. and are protected by copyright laws.

Unauthorized reproduction or usage of any part of the white paper or its contents is strictly
prohibited. Any reproduction or usage of the white paper or its contents must be done with
the express written permission of ByteNite Inc. and must include an explicit reference to the
company as the source.

Any unauthorized reproduction or usage of the white paper or its contents may infringe upon
the intellectual property rights of ByteNite Inc. and may be subject to legal action. The white
paper and its contents are also the subject of pending patents in the US and Europe, and
any unauthorized reproduction or usage may also infringe upon these patent rights.

By accessing the white paper, you acknowledge and agree to the terms of this disclaimer
and to the intellectual property rights of ByteNite Inc. Please respect the hard work and
intellectual property of our company and do not reproduce or use the white paper or its
contents without permission. 

 VI

http://www.bytenite.com

© ByteNite Inc., 2023 WP v2.1 — State of the Art

1. State Of The Art

In the IoT and Big Data era, cloud computing and distributed file systems are fundamental
for data management and processing. Big tech firms and their server farms are the most
valuable resource we can rely on today for outsourcing computations; edge computing has
become indispensable in many applications as the volume of data produced daily by
businesses is increasingly significant.

Years of technological advancement have paved the way to bring cloud computing towards
Industry 4.0, making it possible for a wide range of cloud solutions to become a reality,
bringing innovation and efficiency to business processes and changing our lifestyles. Many
new businesses that operate in the cloud sector, such as Snowflake, Cloudflare, Databricks,
emerged in the past fifteen years, and well-known tech industry leaders Google, Microsoft,
Amazon, and IBM, could become or remain IT giants as a result of their readiness to seize the
cloud’s opportunity.

Cloud computing is more than renting someone else’s machines: it encompasses workload
management, service orchestration, distributed storage, and much more. However, it all boils
down to the target machine’s computing power provided by its processor when it comes to
throughput and performance. After all, as B. Sosinsky [1] has said, “cloud computing is
revolutionary, even if the technology it is built on is evolutionary.”

With the benefit of hindsight in a fully digitalized era, have we ever tried to unwrap cloud
computing and question if there is more we can learn from its foundations? Furthermore, as
the on-premise commercial model has shifted to cloud computing with the advent of the
internet, what will the increase in worldwide connectivity and the rise of 5G turn the cloud
model into?

1.1. Grid vs. Cloud Computing

The invention described in this White Paper mostly conforms to the techniques dictated by
the “grid computing” model. However, several other topics and frameworks can be deemed
relevant to this invention, including utility or on-demand computing, high-throughput
computing, distributed computing, and, most of all, cloud computing. Grid and cloud
computing share several key traits, such as their reliance on distributed resources. Still, they
differ slightly in many domains, including business model, architecture, resource
management, and application model. Today, grid computing has evolved to become the
basis of the more advanced cloud, offering more robust performance in a secure virtual
environment. Yet, I am convinced that there is much value left behind in this transition, and no
project or initiative has been able to seize and implement it at scale so far. I shall begin this
introduction with a brief overview of the two paradigms, as per current scientific literature,
and then review both past and current grid computing projects. I will then establish the
grounds of our theory, shedding light on the immense opportunity that grid computing
represents in today’s technologically evolving world (§1.2), and finally lay down our value
proposition (§2.1).

 1

© ByteNite Inc., 2023 WP v2.1 — State of the Art

The term “grid computing” refers to a form of distributed computing featuring heterogeneous
and geographically dispersed resources provided by different organizations. Grids were
developed in the mid-1990s to provide a solution for large-scale computational tasks that
required significant processing power, only affordable by supercomputers back then.
According to Bote-Lorenzo et al. (2004):

 A grid can be defined as a large-scale geographically distributed hardware and
software infrastructure composed of heterogeneous networked resources owned and
shared by multiple administrative organizations which are coordinated to provide
transparent, dependable, pervasive and consistent computing support to a wide
range of applications. These applications can perform either distributed computing,
high throughput computing, on-demand computing, data-intensive computing,
collaborative computing or multimedia computing. [2]

A year later, in 2005, IBM’s Introduction to Grid Computing put the grid computing definition
closer to a ‘virtualization’ concept that would become the key principle of the cloud:

If we focus our attention on distributed computing solutions, then we could consider
one definition of grid computing to be distributed computing across virtualized
resources. The goal is to create the illusion of a simple yet large and powerful virtual
computer out of a collection of connected (and possibly heterogeneous) systems
sharing various combinations of resources. [3]

Virtualization turned out to be a big win in the utility computing model: it allowed
applications to be abstracted from the underlying fabric and deployed on-demand to more
exacting customers. That’s how we arrived at cloud computing. Subsequently, its rapid
adoption from the mid-2000s was fostered by the decrease in hardware cost and increase in
computing power and storage capacity, as well as the exponentially growing size of data
and processing power used by modern internet applications and services.

Cloud computing delivers different levels of scalable and dynamically configurable services
to customers outside the cloud. A comprehensive definition of cloud computing is given by
one of its ancestors, Ian Foster, in his article “Cloud Computing and Grid Computing 360-
Degree Compared” (2009):

[cloud computing is] a large-scale distributed computing paradigm that is driven by
economies of scale, in which a pool of abstracted, virtualized, dynamically-scalable,
managed computing power, storage, platforms, and services are delivered on demand
to external customers over the Internet. [4]

The virtualization feature of cloud computing is key to providing the necessary abstraction to
deliver on-demand computing power, storage, and networking and to meet stringent
service-level agreements (SLAs) with customers. It is more difficult to find this level of
virtualization in standard grid implementations, as each organization within a grid usually
maintains complete control over its resources.

On the architecture level, grids and clouds share a fabric layer consisting of the raw
hardware resources and the protocols to access them. While clouds provide a unified

 2

© ByteNite Inc., 2023 WP v2.1 — State of the Art

resource layer to virtualize such resources and expose them to end-user applications, grids
feature a more complex set of standard protocols, middleware and toolkits to connect and
manage resources.

Finally, ensuring interoperability and security are fundamental both for grid and cloud
infrastructures. While in grids interoperability comes built-in (they are based on the
assumption that resources are heterogeneous and dynamic), clouds have developed
stronger security policies to comply with regulatory standards. The combination of such
properties in cloud-powered grid computing systems might prove a critical vision for the
future of the cloud in the 2020s.

1.2. Grid Computing Today

Nowadays, most grid computing initiatives around the world have given way to more modern
and service-oriented cloud computing applications. Many grid middleware implementations
and grid infrastructures built in the 2000s have either ceased operating, turned into cloud
projects, or been acquired by cloud computing companies.

United Devices Inc., a commercial volunteer computing company offering high-performance
computing services, was sold in 2007 to Univa, a software company that developed cloud
management products, which was in turn acquired by cloud software company Altair
Technologies. DataSynapse was sold in 2009 to TIBCO Software Inc., a business intelligence
software company, and their grid computing middleware was turned into a BI product
powered by parallel computing. A different fate awaited companies like Entropia, Inc. and
Popular Power, developers of distributed computing software for CPU scavenging, which
were driven out of business. And so on: the list of companies born in the new millennium trying
to ride the wave of grid computing is long [5]. It is no mystery why they all failed in a matter of
years: while they were able to develop large-scale computing infrastructure by accessing the
spare processing capacity of thousand of volunteered CPUs, these companies didn’t offer
any reward to their contributors. Consequently, the resource owners had no incentive for their
continued contribution, and the economic model proved not scalable nor maintainable [6].
Given those years’ computing and network capabilities, the only companies that managed
to survive were those that were noticed and acquired by larger corporations, which could
afford substantial infrastructure investments to keep up with the incoming cloud wave.

In the volunteer computing world, grids made a name for themselves in the 2000’s through
scientific projects that gained much attention in the academic community. Either
infrastructure-based as TeraGrid [7], middleware-based like the Globus Toolkit [8, 9], or
application-based like SETI@Home [10], these projects were aimed at empowering scientific
research in disparate fields (Physics, Medicine, Astronomy, Mathematics, Biology), making it
possible to solve computationally intensive problems that would have been difficult or
infeasible to tackle using standard computers. Some historic volunteer computing projects
made their way through the 21st century and are still working in 2022. Their participation was
primarily motivated by non-monetary prizes, fun, fame, or collaborative advantage. If not for
the economic model, they are interesting to analyze as technically feasible grid computing
projects. Hence, I shall give a quick overview of them.

The most representative is BOINC [11, 12], a platform for distributed high-throughput
computing where worker nodes are desktop and laptop computers, tablets, and
smartphones volunteered by their owners. A fair number of applications or “projects” are

 3

© ByteNite Inc., 2023 WP v2.1 — State of the Art

linked to BOINC and use or have used its distributed computing infrastructure to solve large-
scale scientific problems that could once be tackled only by supercomputers [11, 13].
SETI@Home was the first, and was responsible with giving BOINC the popularity it later had.
SETI@Home was devoted to the Search for Extra-Terrestrial Intelligence through distributed
digital signal processing of radio telescope data. A week after its launch, SETI@Home scored
200,000 participants. After four or five months, it broke one million, and later reached over
two million users. In 2020 the project officially ceased operations. Other remarkable BOINC-
powered projects include: Einstein@Home [14] for the search of weak astrophysical signals
from spinning neutron stars; World Community Grid [15] for scientific research on topics
related to health, poverty, and sustainability; and Climateprediction.net [16] for climate
models simulations. 
Distributed.net [17] was another volunteer computing project that attempted to to solve
large-scale problems, and was governed by a non-profit US corporation. As of 2019,
distributed.net’s throughput was estimated at roughly 1.25 petaFLOPs. Recently,
distributed.net has joined forces with BOINC with the aim of finding mathematical solutions
to cryptographic algorithms. 
Another operating volunteer computing project is HTCondor [18, 19], an open-source
distributed computing software that enables the increase of computing throughput,
developed at the University of Wisconsin-Madison. HTCondor provides a job queueing
mechanism, a scheduling policy, a priority scheme, and a resource monitoring and
management tool, and can integrate dedicated resources (rack-mounted clusters) and non-
dedicated desktop machines into one computing environment.  
Finally, a distributed computing project that has lately gained a broad consensus due to new
discoveries regarding SARS-CoV-2 is Folding@Home [20]. The main aim of this project is to
understand protein dynamics by means of statistically distributed simulations. In 2020 the
computing speed of Folding@Home peaked at 2.43 exaFLOPS, a power in the order of one
billion billion floating point operations per second, or enough to mine a Bitcoin in ten
seconds.

Although these projects are of great help for research, they won’t be able to unlock the full
potential of a worldwide grid. Their genesis and purpose keep them away from reaching a
wider audience and becoming marketable products. The replicability of any of these models
on the market is not only prevented by the lack of a well thought-out payment framework,
but especially by the lack of a performance-oriented resource management system built
with modern and widely adopted standards and protocols.

Starting in 2010, a new distributed technology started bringing collaborative computing back
into the spotlight. A new global paradigm was established and many companies followed by
building products on top of it, or creating private sub-networks to capitalize on what proved
to be more than a brand-new concept. I am referring to the blockchain and all the
blockchain-powered dApps (decentralized applications) that have been implemented
thanks to the wild proliferation of this technology. A dApp is an open-source software
application that runs on a peer-to-peer blockchain network. dApps are built for disparate
use cases across various industries, including finance and payments, gaming, supply chain,
user-generated content networks, and distributed computing.  
The latter use case is relevant to our framework, as it involves dApps that exploit member
devices’ processing power and network to improve and democratize access to CPU- or GPU-
intensive digital services. Some notable implementations of decentralized computing involve
video streaming (Livepeer [21, 22], Theta Network [23]), mobile blockchain mining (Sweatcoin
[24], MinePi [25]), and general-purpose computing (Golem [26], Cudos [27, 28], iExec [29]).

 4

© ByteNite Inc., 2023 WP v2.1 — State of the Art

These applications usually use Ethereum or purpose-minted coins for collecting and
distributing payments, and they handle crypto transactions and task validation with smart
contracts. Ethereum also provides these dApps solutions for guaranteeing distributed
consensus and identity management.

A question that might arise is how Ethereum and, generally, blockchain technology actually
empower distributed computing on the processing side. The answer is simple: it doesn’t.
Uriarte, R.B. and DeNicola, R. (2018) [30], from IMT School for Advanced Studies of Lucca, have
analyzed the architectures of three blockchain-based decentralized cloud solutions. Their
finding is that in all three projects, smart contracts, payments, and reputation are managed
in a “transaction network” built on the blockchain, while the actual computing services are
executed in a “side-chain network” charged with processing, negotiation, and verification of
computing tasks. As the paper highlights, the results obtained from a collaborative,
distributed computing network might be chaotic and heterogenous; hence, the side-chain
network reveals a non-deterministic behavior that must be mediated in order to reach a
consensus in the transaction network, and a specific component is needed to interface
between the two networks. This adds complexity to the already high computational cost of
running and maintaining a blockchain.

There are other elements holding back Ethereum and other blockchain technologies from
implementing a large-scale, efficient grid like the one discussed in this White Paper. Two of
them are the high transaction costs and the capped transaction throughput (Ethereum can
process less than 30 transactions per second), which both pose serious threats to
performance and scalability. Another shortcoming is the almost absent definition of Quality
of Service in most dApps’ smart contracts, or even in their general terms and conditions.
Besides signaling an inability to control and measure the average processing performance,
the absence of QoS makes big customers, which are seldom unconcerned with quality
guarantees, shy away from blockchain-powered computing solutions.

Finally, it is worth mentioning that, despite being the core philosophy of such dApps, the
restriction to support only crypto wallets and cryptocurrency transactions cuts off the vast
majority of both resource providers and cloud computing customers, who normally do
business with fiat currencies and are still — and possibly forever — crypto-averse.

1.3. Fact

In 2023, an immense underlying computational power is widespread throughout the globe
and sits idle most of the time. Altogether, it overcomes the joint processor capacity of the
biggest cloud providers by tens of times. 
More than 12 billion computers, smartphones, tablets, and other commercial electronic
devices are hiding immense potential, especially now that they’re shipped with ever more
performing hardware (see Figure 1), and are unexploited during the inactivity of their human
owners, like during the night. Not only are electronic consumer devices underused: many
businesses owning disparate hardware, from video production facilities to private data
centers and office desktop computers, don’t know how to use it when it’s not at work.

Past and existing grid computing projects have shown us the potential of building a
distributed computing farm by tapping into a category of machines not originally sold to
fulfill utility computing purposes — the mass consumer technology. However, such a vast
unused computational power couldn’t be easily gathered and connected until a few years

 5

© ByteNite Inc., 2023 WP v2.1 — State of the Art

ago because of major technological limitations, including the average network speed,
network coverage, and the hardware capacity of common devices on the market. In
addition, the attempts to build a global grid have been held back by exclusively technology-
geared visions and major market misunderstandings, largely attributable to shortsighted or
too-technical founders, that entailed failing execution strategies and limited outcomes.

Today, the easy and fast access of any device to the internet and the virtualization provided
by the cloud make it possible to collect and utilize the vast worldwide computing potential in
a distributed computing system, reviving the already-known paradigm of grid computing
and enhancing it with the reliability, scalability, and automation provided by the cloud.
However, the lessons learned from the past make us steer clear of development strategies
that have grid technology as the only guiding star. For such a massive commercial project to
be successful, any development choice, from architecture to applications, must be driven by
evident market demands and clear economic visions, that spur the adoption of grid
computing as key to solving market-inherent cost-benefit problems.

Figure 1 — CPU performance of desktop, laptop and server computers from 2004 to 2022. Courtesy of
PassMark Software. 

 6

https://www.passmark.com/

© ByteNite Inc., 2023 WP v2.1 — What is ByteNite

2. What is ByteNite

ByteNite is a commercial, centralized, service-oriented grid computing system based on
subscriber devices' processing capacity, realizing a high-throughput computing environment
for utility computing purposes. Rather than an online marketplace, where buyers and sellers
are directly put into contact, ByteNite creates two different and separate hubs that are
accessible by the purchasers of computing services (“users” or “customers”) and by the
suppliers of computing power (“workers” or “suppliers”), respectively, brokering the
management of computational resources to keep the two segments well coordinated and
functioning.

The three components that build up ByteNite’s grid computing system are the following:

• Core System: the core middleware, or backend layer, responsible for managing, scheduling,
retrieving, transforming, transitioning, sending, organizing, and validating the users’
computational jobs. It stores and makes accessible the users’ and workers’ data, including
job history, activity, wallet balances, and device info. It also generates quotes, collects
users’ payments, and distributes rewards to workers.

• ByteNite Computing Platform: a user-level middleware available as a software-as-a-
service platform, accessible through a web UI or an API, exposing both ready-made and
custom-made computing services (“applications”) to customers. On the platform, users can
configure, submit, and pay for computing jobs, as well as upload and download their data
(inputs and outputs), and view their job history, jobs states, and summary usage. They can
automate the execution of their jobs via recurring tasks and automation pipelines.

• ByteNite Worker App: software that runs on workers’ devices and enables them to receive,
queue up, process, send back, and clear up computing tasks, according to programs
shipped with each task and running inside the App. The Worker App also makes available
the summary of completed tasks and their credits; hence, it allows workers to redeem their
credits by converting them into several forms of reward, including cash.

In other words, ByteNite provides software to connect the users to the system, schedule the
workload, and connect the computational grid to the system. The workers supply the fabric
layer consisting of distributed computing resources, and users provide all the inputs that feed
the applications, including data.

ByteNite stands in the market as a provider of high-throughput computing services. It targets
small- and medium-sized companies seeking faster performance at more affordable prices
than the cloud, and enterprises that operate with big volumes of data daily who need to
speed up their workflows. In both cases, ByteNite helps fulfill performance goals for specific
applications that generate loosely coupled or independent tasks.  
ByteNite will develop three target applications that represent its core mission and an
extraordinary market opportunity: Video Encoding (market size: $1.07B, 4.26% CAGR),
Graphics Rendering ($2.59B, 20.9% CAGR), and Computer Vision ($12.72B, 16% CAGR). In
addition to being three of the most intensive commercial computing activities, these
applications are well-suited for distributed computing as each of them generates workloads
that can be divided into multiple, independent smaller tasks.  

 7

© ByteNite Inc., 2023 WP v2.1 — What is ByteNite

ByteNite’s customers will be also provided with the tools to develop their own distributed
applications to run on the grid resources using ByteNite Computing Platform. We can find a
variety of use cases for such tailor-made solutions in the media & entertainment industry, as
well as in the financial and healthcare sectors.

On the other side, ByteNite offers a chance to make passive income out of ordinary devices,
like personal and office computers, smartphones, tablets, small servers, and eventually a
wider range of IoT devices like video game consoles, TVs, home appliances, and industrial
electrical machinery. Whilst in 2022 we have online marketplaces to effortlessly sell or rent out
almost everything from material belongings to volatile goods like electricity, it is not yet
possible to rent out our devices’ exceeding computing capacity in the matter of a few
minutes. ByteNite brings together technology to enable such a monetization possibility with a
smooth onboarding of the workers, by streamlining the workflow and condensing all the
interactions into a single piece of software, the ByteNite Worker App.

2.1. Innovation

ByteNite is the first distributed computing solution to combine the following
accomplishments:

• Uses heterogeneous, cross-platform, both mobile and desktop devices located anywhere
as worker nodes;

• Creates a computing-capacity sharing economy based on the trade of distributed
processing tasks with real money;

• Is open to everyone;

• Constantly monitors performance and automatically turns it into business requirements and

price adjustments;

• Manages non-deterministic behaviors with a centralized scheduling system based on both

a-priori and a-posteriori fault-tolerant techniques.

ByteNite has the mission of becoming the first worldwide grid powering a general-purpose
high-throughput computing system, where everybody can build and run their own distributed
applications or use ready-made flagship computing products.

ByteNite’s values can be described as follow:

• Availability 
The extension of ByteNite’s grid, together with its devices' diversification, geographical
distribution, and heterogeneous connectivity, allows and guarantees flexible provisioning of
computing resources at any time.

• Agility 
The commodification and customization of computing services, plus the existence of an
optimal delivery pipeline, make the entire process from data ingestion to output upload
extraordinarily agile.

• Speed 
The more nodes in the grid, the less time is needed to process partitioned jobs. This fact
makes ByteNite competitive and preferable to the classic cloud and on-premise computing
for various use cases.

 8

© ByteNite Inc., 2023 WP v2.1 — What is ByteNite

• Sustainability 
Deploying distributed computations on existing and commonly active devices is an
environmentally-friendly alternative to using server farms, provisioning new hardware, and
building new infrastructure. ByteNite's distributed computing model guarantees an inherent
heat dispersion from devices’ processors that are connected from different locations, which
eliminates the need for artificial cooling of rack-mounted servers. In addition, old or unused
devices can be turned into ByteNite “workers” instead of winding up in the trash, thereby
lowering the pollution caused by electronic waste.

• Security 
Data is at the core of ByteNite's business, and so is cybersecurity. All data coming to and
from ByteNite’s system is encrypted and handled in isolated runtime environments, and
workers are constantly monitored and readily excluded if deemed potentially malicious. In
addition, ByteNite’s reliance on a robust and certified cloud grants it ready and updated
cybersecurity policies and implementations that are now standard for all cloud-based
software companies.

2.2. Business Model

ByteNite creates an ecosystem where buyers of computing services can find solutions, and
hardware owners can receive compensation for supplying their devices’ computing power. To
enable such a marketplace, ByteNite charges customers on a pay-per-use basis: the
proceeds are then divided into a “user rewards” share (70%) and a ByteNite share (30%). Given
ByteNite’s cloud infrastructure costs, like egress, storage, and peripheral computing, a fair
estimate of the gross profit margin can be 20%.

To keep track of inbound and outbound transactions in all currencies and fulfill internal
bookkeeping, ByteNite introduces a utility currency, or fake coin, called “ByteChip", whose
value can be altered at any time to keep up with economic developments. The value of a US
dollar in ByteChips () on the date of this publication is:

ByteChips are used throughout ByteNite’s system to purchase and sell computing services.
Users can buy ByteChips on the Computing Platform and spend them on computing services.
Every application has its pricing table or formula, and users can simulate the cost of their jobs
through the platform.

On the other side, workers accrue ByteChips for every completed task. Every task has a
“bounty” attached, which expresses the amount of ByteChips due to the worker for correctly
processing it. The bounty, or prize, is proportional to the relative size of the task’s input chunk
to the total job’s data, according to this formula:

Equation 1 — Formula for the ith task bounty. The term in parentheses represents the total workers’
reward share for a given job; is the dimension of the ith chunk; is the dimension of the job’s
data.

 = $1 200

bountyi = (job price ⋅ 0.7) ⋅
sizei

job size

sizei job size

 9

© ByteNite Inc., 2023 WP v2.1 — What is ByteNite

Failed tasks don’t spawn rewards, while replicated tasks bear a portion of the total task
bounty. Finally, workers can use their ByteChips to purchase affiliated items on the Worker
App, like gift cards, discounts, and online subscriptions, or they can redeem money in their
currency via a bank transfer from ByteNite.

ByteNite uses Stripe to handle money transactions from the users to ByteNite and from
ByteNite to the workers, outsourcing all the issues related to tax, currency conversion, and
anti-fraud to said service.

2.3. Glossary

Before diving into the system’s description, I shall provide a list of terms to minimize possible
ambiguities throughout the text and help the reader get acquainted with our terminology.

Term Description Example

active
devices

The devices that are currently available, or
equivalently have a ByteRank greater than
0

active grid The portion of the grid composed of active
devices

application same as computing application

ByteNite’s utility currency, used by
customers to purchase computing
services, and by workers to redeem
rewards

A user can buy a $0.30-worth
job using 60 ByteChips. A worker
can convert 3K ByteChips into a
wire transfer of $15.

capacity
pool

Group of devices selected to process a
fixed amount of tasks. Changes from job to
job.

A group of 45 active devices,
with a capacity score spanning
from 2800 to 1700

computing
application

Any distributed computing program
chosen or submitted by a customer, and
eventually run in the grid through the
Worker Apps

A Python program implementing
video encoding with FFmpeg

Computing
Platform

ByteNite’s software-as-a-service product
where users can submit their high-
throughput computing jobs

app.bytenite.com

Core
System

ByteNite's backend system, responsible for
task management, data storage,
payments, device monitoring, and much
more

chunk A portion or segment (typically small) of
the input data

10s of video

Term

ByteChip

 10

http://app.bytenite.com

© ByteNite Inc., 2023 WP v2.1 — What is ByteNite

Table 1 — ByteNite’s dictionary. The terms listed here refer to specific subjects, transactional items, or
programming components that pertain ByteNite’s system and products 

customer Like “user”, but with a connotation of
physical buyer person

The chief engineer at a video
streaming company, or a private
visual content creator

grid The network of worker devices intended as
a virtual collection of computing nodes
equipped with middleware

job A unit computational goal submitted by a
user, expecting an input and an output

The encoding of a video file

node A worker device or a group of tightly
coupled worker devices owned by the
same worker

A set of 10 office computers
owned by worker “John B.”

supplier Same as “worker”

target
subset

The list of devices selected for a job after
they have passed the eligibility test

task A unit computational activity destined for
execution on the worker devices,
comprising a chunk, an executable or
program, and additional metadata

A .zip file containing 10s of video,
the video encoding program,
and summary information about
the original video

task
bounty

An amount of ByteChips representing the
value of a task, that is credited to a
worker’s wallet upon completing the task

A 15-second video encoding
task worth 2 ByteChips

user The digital identity of a buyer of ByteNite’s
computing services

An ID record like “5ZSWt76”

worker The party supplying the computing power
of its device(s) via the Worker App

A 20-year-old girl owning a
smartphone and a computer, or
Intel Corporation

Worker
App

The software running on the worker
devices that allow them to process
ByteNite’s tasks and the workers to cash
out the rewards

worker
device

Each of the devices that run the Worker
App

A Samsung Galaxy A53 5G, or an
HP Windows computer

Description ExampleTerm

 11

© ByteNite Inc., 2023 WP v2.1 — Core System

3. Core System

In this section, I shall give an overview of how ByteNite works from a backend perspective:
how its Core System is structured, which components are responsible for running the services,
what the most relevant workflows are, and how monitoring and scheduling mechanisms work.

3.1. Architecture

ByteNite’s Core System has a micro-services architecture. Each service represents an
independent and scalable backend component running in the cloud and interfacing with the
Worker App, the Computing Platform, and the other components through dedicated APIs.
The architecture diagram is depicted in Figure 2.

The following internal services run the business logic (see §3.3), and are not exposed publicly:

• The Partitioner verifies the integrity of data uploaded by users through the Computing
Platform, and splits it into smaller chunks suitable for worker devices. A task record is
created for every chunk, and the record ID is queued on a job-specific Redis queue.

• The Feeder manages and supervises the entire task scheduling system. It takes tasks from
job-specific queues and puts them in a global task queue ready to be consumed by the
Tasks API. Tasks are sorted according to a scheduling algorithm (§3.3.4) that considers the
availability of computing resources in the grid, the job’s requirements, and the user’s
preferences.

• The Validator verifies the integrity and correctness of results sent by the worker apps.
Different jobs could use different validators.

• The Assembler collects completed and validated tasks from the Validator and assembles
them into larger chunks until it has rebuilt the full processed data file, which is uploaded to
a cloud storage bucket accessible from the Computing Platform.

• The Reward System is responsible for clearing ByteChip transactions between ByteNite
and the workers and ensuring that all balances are constantly updated.

The customer APIs handle communication with the Computing Platform:

• The Jobs APIs allow the Computing Platform to create and configure new jobs, send input
data, send and receive state updates, and fetch download links.

• The Billing API allows the Computing Platform to access billing and payment information.

Similarly, the worker APIs connect the Core System with the Worker Apps:

• The Tasks APIs allow the Worker App to fetch new tasks, download data and programs,
and send back results or abort the task.

 12

© ByteNite Inc., 2023 WP v2.1 — Core System

 13

Fi
g

ur
e

2
—

 B
yt

eN
ite

’s
 C

o
re

 S
ys

te
m

’s
 a

rc
hi

te
ct

ur
e

d
ia

g
ra

m

© ByteNite Inc., 2023 WP v2.1 — Core System

• The Wallet API allows the Worker App to get the ByteChip balance and history. It can also
request and record ByteChip expenditures in services or payouts.

• The Devices API connects to Firebase to fetch information about task and device states,
user authentication, and device preferences. This is the only server-side component that
connects to Firebase.

Finally, ByteNite’s data is sorted and stored in the following components:

• The Cloud SQL Database is a SQL database that supports atomic transactions. It stores
all data with persistence and consistency priorities over access performance.

• The Firebase Database stores all device-related information like hardware specifications
and device state and handles authentication. This is the only database that directly
interfaces with the devices.

• The Redis Databases are fast databases for internal usage that handle short-run storage
for frequent reads, writes, and inter-service messages.

• Cloud buckets are web-based folders with access restrictions that store files downloaded
or uploaded by users.

3.2. Workflows

ByteNite fulfills its twofold mandate of collecting users’ jobs and distributing them to the grid
through several recurring workflows. Each workflow is a set of rules and actions happening
either in the Core System, on the Computing Platform, on the Worker App, or across them.
Workflows are well-coordinated with the other processes and designed to make the whole
execution fault-tolerant and agile. From a 360-degree perspective, the processing of a job
can be summarized as follows:

When a new job is submitted on the Computing Platform, ByteNite sets up a pipeline
between the user and the grid. First, the Feeder builds the framework of the scheduling logic
for that specific job, and the Reward System estimates its cost. Hence, the job starts and the
Job Upload API streams the input data to the Partitioner, creating chunks on the fly and
passing them on to the Feeder. The Feeder wraps them with an executable, forming tasks
that are scheduled and sent to the grid. The distribution logic established by the Feeder’s
scheduling algorithm guarantees the abstraction of the scheduling from the actual delivery
so that the process is completely automated and reliable. In particular, the algorithm of the
Feeder enforces the concept of “first come, first served”, so that no data chunk needs to wait
for a specific device to show up, but every chunk is appended to global queues from which
the next available device can download it (see §3.3.5). Every device competes in the grid to
process as many tasks as it’s eligible for, and its only assignment is to tune in with ByteNite’s
server to wait for new tasks in the global queues, to process them and upload back the
results (Figure 3). The grid responds asynchronously, sending back processed tasks from
multiple devices. Several measures are adopted to guarantee hassle-free continuation of the
processing (see §3.3.6) when node failures or delays are encountered. In any case, the
workflow continues up to the moment when all tasks have been successfully processed,
retrieved, and validated. Finally, the Assembler quickly rebuilds the integral output using

 14

© ByteNite Inc., 2023 WP v2.1 — Core System

indexes contained in tasks’ metadata and uploads it to a Cloud bucket immediately
available to the user.

All data that goes through the Core System is temporarily stored and released as soon as a
job is completed, except for the final output which can be stored in a Cloud bucket for 24
hours. Because neither the Partitioner nor any other services are tasked with the heavy lifting
of data processing, ByteNite removes the need to maintain a high-capacity infrastructure. At
the same time, ByteNite can control the inflow and outflow efficiently and insure the integrity
and security of data processing.

In the following diagrams, I will detail two key workflows: the job submission workflow running
across the Computing App and the Core System, and the task processing running on the
Worker App.

Legend:

(continues on next page)

Yellow Control flow

Blue Remote procedures

Orange Local procedures

Green Start

Red End

 15

© ByteNite Inc., 2023 WP v2.1 — Core System

Job submission workflow
Partitioner

Start

User

Error

Get schema for
selected job template

Estimation
approved? StopNo

Send job
specific info

Fill preferences (speed,
price,...)

Get time/price
estimation

Jobs API

Authenticated?

Schema
validation

successful?

No

Yes

Start

Get user info

Get available job
templates

Select job template

Fill job specific
info

Show
error

Fill job
specifications

No

Yes

Yes

 16

© ByteNite Inc., 2023 WP v2.1 — Core System

 

Estimate chunks
number and size

Prompt user
new time and

price

User
approves?

Stop

No

All data
sources
ready?

Job exceeds
time or price
estimation?

Send state:
"ready"

Send state:
"loading"

Send chunks
infos

Prepare first
chunk

Start chunk
upload

Prepare next
chunk

Wait

No

Yes

No

Yes

Yes

 17

© ByteNite Inc., 2023 WP v2.1 — Core System

Figure 3 — The job submission workflow, running across the partitioner, the Computing Platform, and
the Jobs API.

More
chunks?

Wait

Upload
done for all

data
sources?

No

Chunk
valid

Add chunk to
partitnioner

queue

Yes

Yes

Send upload
confirmation

No

Stop

Send state: "done"

Requeue
chunk

Wait upload

Show upload
confirmation

Yes

No

Stop

 18

© ByteNite Inc., 2023 WP v2.1 — Core System

 

Task processing workflow
Worker App

Wait

Require task

Error

Core System

Authenticated?

Fetch device
queue

Task available?

Yes

Wait

Start

Download
task

No

No

Task state:
SCHEDULED?

No

Yes

Task state:
ASSIGNED

Yes

 19

© ByteNite Inc., 2023 WP v2.1 — Core System

Figure 4 — The task processing workflow allows the worker devices to ask for tasks from the Core
System and process them.

Device state:
BUSY

Run task

Error

Error

Task started?

Task state:
RECEIVED

Download
confirmed?

Task state:
FAILED

No

Task state:
FAILED

No

Upload
result

Device state:
READY

Task state:
COMPLETED

Add to assembler
queue

Wait task
completion

Error

Task state:
RUNNING

No

Device still
responding?

Task state:
FAILED

Yes

Yes

Yes

 20

© ByteNite Inc., 2023 WP v2.1 — Core System

3.3. Business Logic

ByteNite’s innovative data partitioning and task distribution mechanism is ruled by a patent-
pending algorithm that implements and optimizes the business logic underlying the
operational decisions, like which and how many tasks are assigned to each device for any
given job. The algorithm is constantly updated by our team; however, I’d like to provide an
overview of what the algorithm will grow into as development proceeds and more data
points are collected. For ByteNite to fulfill its attributes of Availability, Agility, and Speed, it is
critical that this mechanism will eventually work as efficiently as, for instance, Google’s
PageRank. That’s why I will focus on the business advantages of specific flows and structures
composing the algorithm, and I shall name the device ordering protagonist of this section
“ByteRank”.

The first domain of information referred to as “grid indexes”, is described in §3.3.2. The grid
indexes are job-independent parameters that optimize knowledge about devices by giving
them a score, a ranking, and several flags. They are built by a function in the Feeder that
continuously collects devices’ information and runs formulas. Next, I describe the scheduling
algorithm in §3.3.4, which combines the grid indexes with the job’s information to produce a
bespoke partitioning pattern and a distribution rule. Finally, I cover how said distribution rule
is turned into an actual workflow (§3.3.5) and how failures and delays are handled (§3.3.6).

3.3.1. Global Inputs

ByteNite must have access to all the relevant information about any device’s state, any new
job’s metadata, and any possible user’s preferences to understand how to efficiently assign
tasks to the grid. This is a crucial responsibility that drives the performance of ByteNite’s
computing service. In this paragraph, I shall list the types of information that ByteNite uses to
feed the algorithm, which I generally refer to as “global inputs”.

3.3.1.1. Grid State

ByteNite collects devices’ static and dynamic data, (e.g., manufacturer specs and memory or
network usage), and stores it in the Firebase database, which is updated every 30 seconds.
Here is a list of monitored parameters on each worker device through the Worker App:

Parameter Update Example

Operating system One time Android, Windows

Processor’s manufacturer,
family, and model

One time Intel i7-6700K

CPU cores One time 4

GPU model One time NVidia GeForce 8600M GT

RAM capacity One time 8 GB

Total storage capacity One time 256 GB

 21

© ByteNite Inc., 2023 WP v2.1 — Core System

In addition, ByteNite needs to know if the worker has specific usage limitations that are
configurable from the Worker App:

Tables 2 & 3 — Parameters of the grid state. The first table shows the parameters the worker devices
automatically send to ByteNite according to a schedule (“Update” column). The second table shows
the worker’s preferences which are set once by the worker and updated at will.

This collection of information, plus other Firebase data like login and usage history, is
associated with every device and jointly constitutes the “grid state”. The state is used to rank
the devices according to their general availability and predisposition to perform computing
tasks at any given time, as explained in §3.3.2.

3.3.1.2. Job Specification

The kind of information that a new job generates can be varied and unstructured. In the first
place, it depends on the type of computing application, e.g., video encoding, text
processing, or graphics rendering. Every supported application running on ByteNite must
have a corresponding implementation on the Computing Platform (job templates and
parameters schema), in the Core System (a bespoke partitioning tool), and on the Worker
App (the actual distributed script that runs the application). Consequently, different

Worker App’s online state 5s Online / Offline

Network connection type 30s Wi-Fi, 4G

Network connection speed 30s 46 Mbps

Network connection latency 30s 28 ms

IP address 30s 192.0.2.1,
2001:db8:0:1234:0:567:8:1

Available (unused) RAM 30s 2.23 GB

Available (unused) storage 30s 145 GB

Battery percentage (if
applicable)

30s 86%

Charging state 30s Plugged in, unplugged

Core temperature 30s 73 F

Parameter Update Example

Parameter Update Example

Scheduled availability Upon worker’s request SAT-SUN 01:00AM-12:00PM 
MON-FRI 00:00AM-07:00AM

Allowed network types Upon worker’s request Only Wi-Fi

Data traffic threshold Upon worker’s request Uncapped

 22

© ByteNite Inc., 2023 WP v2.1 — Core System

applications require different classes of data. In general, all these applications share two
categories of input information besides the raw data:

• Metadata. May include any of the following:

• Job parameters. They are input by the user and used to configure the application and the
job submission workflow. I’ll provide below a list of parameters for the Video Encoding
application, with possible generalizations:

Tables 4 & 5 — The information contained in a job specification. Table 4 refers to all the metadata
attached to a job or, equivalently, the description of the input data. Table 5 refers to the user-defined
job parameters used to configure the applications.

3.3.1.3. Job Preferences

Before submitting a job, the user can specify other parameters, which allow to tweak the job
execution’s speed, trustworthiness, and other factors. While these parameters don’t affect
the specification of a job — meaning that the applications don’t use them — they affect the
scheduling algorithm run by the partitioner and the feeder by reflecting the user’s

Metadata Examples

Input format MP4, MKV, MOV 
OBJ, STL, STEP, 3DS

Input size 3.04 GB, 12 Mbps

Input length 30 min 
124 documents 
92,000 frames

Other type-specific data 60 fps, 1920x1080p, AVC

Application Parameter Examples

(any) Input source A link to a user-owned cloud
bucket

(any) Output destination A bucket name, access key,
and secret key, to save the
output on a user-owned
bucket

Video Encoding Output format MP4, MKV, WebM

Video Encoding Output aspect 1280x720p, crop top & bottom
by 10%, rotate 180° clockwise

Video Encoding Output video specs H.265, 30fps, VBR 700k

Video Encoding Output audio specs AAC, 2.0 channels, 48 kHz,
192kbps

Video Encoding /
Computer Vision

Output video filters Color correction, object
detection

 23

© ByteNite Inc., 2023 WP v2.1 — Core System

preferences on how to execute the job. Below are the user’s preference parameters and their
summary descriptions:

Table 6 — The job preferences expressed by the user. These inputs will drive the scheduling algorithm
towards decisions that tweak the execution and performance of a job.

3.3.2. Grid Indexes

A set of summary metrics, or indexes, are computed and constantly updated to summarize
and sort all the data points of the grid state and reflect every device’s availability and
potential. I shall describe their composition and usage in the following paragraphs.

3.3.2.1. Capacity Score

The capacity score is a number expressing every device's availability and computing
capacity on an increasing scale. It is computed through several additional indexes that
quantify the device’s immutable computing capacity (e.g. processor type), and its dynamic
availability (e.g. the network speed over time). The score is updated anytime one of its inputs
changes, according to the update schedule presented in Tables 2 & 3. The capacity score is
intended to prize more performing processors, strong network connections, and high RAM
and CPU time availability.

The capacity score () is the sum of the additional scores presented in Table 7:

User’s
preference

Description Values Implementation

ByteLevel Sets the overall
performance, in terms
of speed and priority, of
the job

• low

• balanced

(default)

• high

The scheduling algorithm takes
this choice into account to
select specific capacity pools
and a different task distribution
that allow the job to get done
faster (High) or slower (Low)

Trusted
processing

Ensures that the
customer’s data is
processed only on
verified nodes

• on

• off (default)

The scheduling algorithm filters
out all the unverified devices in
the grid when creating the
target subset

Allowed
regions

Specifies a set of
geographical areas
where ByteNite can
send the user’s job to
be processed by the
local workers

• any (default)

• Americas

• Europe

• Asia and

Pacific

The scheduling algorithm filters
out all the devices outside the
allowed regions when creating
the target subset

Preferred
hardware

Specifies a range of
processors, machines,
or device
configurations to be
used to process the job

• desktop
computers

• GPUs

• Wi-Fi-

connected
devices

The scheduling algorithm
enforces the processing on the
specified devices, though the
target subset filter and a
modification of the computing
application

C

 24

© ByteNite Inc., 2023 WP v2.1 — Core System

processor score + network category score + network speed score +  
	 + network stability score + RAM availability score + CPU availability score

Equation 1 — The capacity score's formula. Refer to Table 4 for the composition of each term.

Every term of the sum is already weighted to reflect the importance of its contribution to the
capacity score (see column “Range” below). The minimum value of the capacity score is 0,
and the maximum is 2700. Here is the description and composition of each term of the sum:

C =

Score Description Default Formula Range

Processor
Score

Ranks all known
processors’ based on
their performance

250 External benchmarking 1 — 500

Network
Category
Score

Prizes more stable
network connection
types up to 300 points

100 • Fiber/Cable/DSL = 300

• Starlink = 100

• Mobile & other = 0

0 — 300

Network
Speed Score

Prizes higher network
speeds up to 1000
points, with 70% of the
prize concentrated
between 0Mbps and
200Mbps

100 0 — 1000

Network
Stability
Score

Prizes less variable
network speeds over the
last 10min interval up to
300 points

100 0 — 300

RAM
Availability
Score

Prizes a RAM availability
higher than 256MB up to
300 points, with two
thirds of the prize
between 256MB and
1024MB

100 0 — 300

CPU
Availability
Score

Prizes a CPU availability
higher than 10% up to
300 points, with two
thirds of the prize
between 10% and 50%,
and max prize at 100%

100 0 — 300

 

 
 

 

score = max {0, L (1 − e−k(x−x0))}
x = available RAM in MB
L = 300
k = 0.00143048
x0 = 256

 

 
 

 
 

score =
1
2

L[(1 − e−kx) + (1 − e−k(uy))]
x = download speed
y = upload speed
L = 1000
k = 0.00601986
u = 1.66666667

 

 
where and are,
respectively, the mean
and the standard
deviation of a sample of
network speeds over the
past 10 minutes

score = c ⋅ max {0, 1 −
σ
μ }

c = 300
μ σ

 
 

 
 

score = max {0, a x2 + bx + c}
x = percentage of available CPU

a = − 0.03333333
b = 7
c = − 66.66666667

 25

© ByteNite Inc., 2023 WP v2.1 — Core System

Table 7 — The list of scores that compose the capacity score.

3.3.2.2. Fault Rate

The fault rate examines the past behavior of a device by counting the number of times it has
failed or delayed the execution of tasks. Unlike the capacity score, which estimates the
performance of a device, the fault rate forecasts the outcome of a task, which may be
unrelated to the capacity score of the device that ran it. Suppose, for instance, that a very
well-equipped Mac with a capacity score of 2400 has installed an application that conflicts
with ByteNite’s process, causing the App to crash and the tasks to fail. Before the engineers
manually exclude the device from the grid and send a notification to the worker, the Mac
would keep getting a high number of tasks, and there would be no action to prevent further
task failures.

With the accountability of the past behavior expressed by the fault rate and the threshold
flags discussed later in §3.3.2.4, it is possible to progressively discredit or rapidly exclude
faulty devices from the task execution and trigger automatic quarantines and technical
checks.

There are three types of faulty operation on a task: failure, delay, or incorrectness. The reader
can explore about this topic further in §3.3.6. The fault rate takes the last 20 faulty operations
that are attributable to the worker device and produces a number between 0 and 1 which is
the average faulty operation occurrence. Here are the inputs used in the fault rate’s formula
further down:

Table 8 — The fault rate’s inputs. Every vector records the last 20 outcomes of tasks run on a device.

Hence, the formula for the fault rate () is:

Equation 2 — The fault rate’s formula. Refer to Table 5 for the definition of the variables , , and . is
the sample mean.

As explained later, the fault rate lowers a device’s ByteRank, but only up to the point where
the faulty operations are frequent enough to trigger the temporary exclusion of the device
from the ranking. A script regenerates a clean fault rate by resetting the vectors , , and
to 0 after the device has been reviewed and any problem causing the repeated failures has
been fixed.

Input Description Values Example

Failure state of the past 20
processed tasks

1 = failed 
0 = succeeded

Delay state of the past 20
processed tasks

1 = delayed 
0 = on time

Incorrectness state of the past 20
processed tasks

1 = incorrect 
0 = correct

I I = (1, 0, 0, 0, 0, 0, 0, …)

F F = (0, 0, 1, 0, 1, 0, 0, …)

D D = (1, 1, 1, 0, 0, 0, 0, …)

R

R =
1
3 [μ(F) + μ(D) + μ(I)]

F D I μ

F D I

 26

© ByteNite Inc., 2023 WP v2.1 — Core System

3.3.2.3. Repechage Lottery

The repechage lottery is a mechanism to grant low-ranked devices a second chance to
prove they’re worth a higher ByteRank and receive more tasks. The entire grid is enrolled in
the lottery, and the winners get their ByteRank increased by 100 positions relative to the
ranking they would normally have without the lottery. The lottery is run daily, and the rank
increase is valid for 24 hours.

The lottery is based on a random draw where every device has a different probability of
winning, and the outcome is positive or negative. The probability of winning () is computed
from the hours elapsed since the last processing of a task and is maximum at 12h elapsed,
where it attains the value of 5%. While I’ll discuss the implementation of the repechage lottery
in §3.3.3, I provide here the formula for the probability of winning, which is a grid index:

 
 

Equation 3 — Formula of the probability of winning the repechage lottery for a generic device.

This lottery has the effect of randomly pushing inactive devices up in the rankin. It tries to
prevent high-performing devices from absorbing all ByteNite’s tasks and rewards. Since we
expect no more than 5 devices out of 100 to be boosted daily, this alteration doesn’t disrupt
ByteNite’s efficient ordering.

3.3.2.4. Threshold Flags

Although numerical indexes are helpful in discerning and ranking devices accurately, it is
critical for ByteNite to identify which devices shouldn’t be enrolled in the scheduling algorithm
at all and pass on that information to the feeder. Hence, I introduce indicators, or “flags”, that
signal when certain grid values have been exceeded or switched. Each flag is part of a
device state as recorded in the Core System and helps make scheduling decisions
accordingly. Flags can capture the most obvious state changes, like the Worker App online
state, or alarming values, like a low battery level. The following table shows the flags and their
threshold or rules:

l

h = hours elapsed since the last task processing
c = 0.00256564
β = 0.16666667

l = c ⋅ h2e−βh

Flag Description Threshold value

Disconnected Indicates that a device is offline worker App’s online state = offline

Repeated failures Indicates that a device has a too
high fault rate

Low battery Indicates that a device has a too
low battery level

High temperature Indicates that a device has a too
high core temperature

R > 0.5

battery percentage < 10 %

core temperature > 120∘F

 27

© ByteNite Inc., 2023 WP v2.1 — Core System

Table 9 — The threshold flags are raised on exceeding or matching specific threshold values of a
device state.

3.3.3. ByteRank

The grid indexes defined above are further summarized in an ultimate ranking that I call
ByteRank. The ByteRank sorts all the devices in ByteNite’s grid according to their overall
expected capability, intended as a measure that encompasses all the perspectives analyzed
so far, from the expected performance expressed by the capacity score to the predicted
probability of failure of the fault rate. A device's ByteRank ultimately answers the question,
“how much potential does this device currently have relative to the other devices in the
grid?”. In fact, it is also used to rule out flagged devices by setting their value to 0. That’s also
why it must be deemed a primary reference for any scheduling choices.

The ByteRank is computed iteratively starting from the threshold flags, then the capacity
score, and finally the fault rate. It outputs a unique positive number for every device
representing the rank, or “0” if the device is excluded from the rank. The procedure that builds
the ByteRank is described below.

Lottery script — runs once a day:

INPUT

 the vector of the devices’ probabilities of winning the repechage lottery

START

Generate a random variable from the Bernoulli distribution for every device in the grid.  
The outcome is a vector of s and s, where “ ” means the device has won the lottery

END

Main script — runs every 30 seconds or less:

START

Build a linked list containing the IDs of the devices that are not flagged

Order the list according to the capacity score of the devices in descending order

Scan the list from bottom to top and, at iteration , push the device by positions towards the

bottom, where is the fault rate of such device (assuming the list numbering starts at)

Push each device that won the lottery by 100 positions toward the top of the list

The ByteRank of a device is its position in the list , or “0” if it is not found in the list

(l1, l2, l3, …, lM)

B(li) i
0 1 1

B m

i m − i ⌊i R⌋
R 0

B

 28

© ByteNite Inc., 2023 WP v2.1 — Core System

END

Algorithm 1 — The creation of the ByteRank.

Hence, the ByteRank of each device is the index of the ordered list representing all the
currently available devices ranked according to their capacity score, fault rate, threshold
flags, and outcome of the repechage lottery. The top-ranked device has a ByteRank of 1,
and the bottom-ranked device has a ByteRank of (a number lower or equal to the total
number of worker devices). I will refer to the devices with a ByteRank different than 0 as the
“active devices”, and as the size of the active grid.

In the following paragraph, I’ll discuss how the ByteRank and the other grid indexes turned
into actionable parameters that feed the scheduling decisions any time a new job is
submitted.

3.3.4. Scheduling Algorithm

The scheduling algorithm represents the core of the business logic of ByteNite. It decides how
to prepare and assign tasks to a subset of the active grid. It comes into action at any job
submission, and, in a matter of milliseconds, outputs a chunk distribution and a
correspondence between device pools and chunk sizes to instruct the partitioning and
distribution pipeline (see §3.3.5). Throughout the following paragraphs, I will describe how the
scheduling algorithm works; I will refer to “the job” as a generic job submission and to “the
ByteRank” and “the grid indexes” as a snapshot of the ByteRank and the grid indexes taken
at the instant that job is submitted.

When the job’s metadata is acquired, the feeder reads the grid state and the grid indexes
and, together with the partitioner, selects a subset of candidate devices through two
operations: the election of eligible devices and the creation of capacity pools.

3.3.4.1. Eligibility

Before the task creation and assignment logic are built, the active devices are filtered to
meet job-specific requirements. App version, device location, or other information about a
device might prevent it from supporting the job, depending on the job’s compatibility and
how stringent the user’s preferences are. To be deemed eligible for the job, a device must
meet the following requirements, when applicable:

• Match the job’s hardware restrictions, like processor and GPU type;

• Match the job’s data exporting restrictions, or be located in the geographical area allowed
by the job;

• Be a Trusted Node, if required by the job;

• Have installed a version of the App compatible with the job;

n
N

n

 29

© ByteNite Inc., 2023 WP v2.1 — Core System

The filtered list of active devices created in this step is called the “target subset” of the job
and is passed on to the next stage of the algorithm. 

Figure 5 — The election of eligible devices and the creation of the target subset. Eligibility criteria
include job-specific requirements and user preferences.

3.3.4.2. Capacity Pools

The clean and filtered Byte-ordered list of devices — the target subset — represents the
ultimate array of candidate devices for the current job. At this point, if the workload were
simply randomly assigned to the target subset, without prioritizing top-ranked devices over
low-ranked ones, the utility of the ByteRank would cease. Considering that the target subset
can potentially contain thousands of devices, and their actual performance can vary from a
few seconds to a few minutes per task, it would be impossible to predict the final throughput
if every device could fetch any tasks indiscriminately. Therefore, the question that motivates
this paragraph is, “what is an efficient way to assign tasks to the target subset while
maintaining a constant throughput all over it?”.

I propose a model consisting of the creation of device pools (“capacity pools”) working jointly
with the task queuing system described in the distribution process (§3.3.5) to solve the
workload assignment challenge proposed above. The capacity pools model is based on
grouping the devices into clusters, or pools, according to their position in the ByteRank and
their capacity score. The cumulative capacity score in every pool must be higher than a
threshold, and the size of each pool cannot be smaller than another one. Therefore, the pools
end up being balanced in capacity and size. The procedure to build the pools is as follows:

INPUT

The target subset of the ByteRank for job  
The capacity scores of the grid  

The threshold minimum value of the cumulative capacity score for a pool 
The minimum pool size

START

Create a pool as a virtual collection of device IDs. 

Place the device at the bottom of the target subset (lowest ByteRank) in the pool

B(j) j
(C1, C2, …, CM)

Cmin
smin

 30

© ByteNite Inc., 2023 WP v2.1 — Core System

Scan the target subset from bottom to top. 
At each iteration :

• if the last updated pool has a cumulative capacity score lower than or a size lower than ,
merge the device with the last updated pool

• else, create a new pool with device and create a link from it to the previous pool

The resulting list of pools containing devices IDs are the capacity pools

END

Algorithm 2 — The creation of capacity pools

Figure 6 — The creation of capacity pools (visual). The target subset’s devices are grouped starting
from the low-ranked, with the rule to create a new pool when either a minimum capacity or size has
been reached. Later, pools are numbered in the reverse order, i.e. from top-ranked to bottom-ranked.

Although I won’t cover how and are set in this version of the paper, I’d like to note

that, given the median capacity score of the target subset , it is suitable that

 to avoid creating pools that are too large or too small. While helps to

create well-balanced pools where the overall Capacity is similar, is a measure against
the production of small high-capacity clusters that absorb too many tasks and no longer
benefit from parallelization.

As explained in the distribution process, an equal number of tasks will be assigned to each
capacity pool, and every device will be able to process only the tasks assigned to its pool
with a queue inheritance mechanism.

The introduction of the capacity pools activates the potential of the grid indexes in
connection with the execution of a job. Devices with lower capacity scores will tend to
overcrowd the pools they have been assigned to, while top-ranked devices will be in
moderately crowded pools. Since the tasks are distributed in equal numbers to each pool,
the top-ranked pools will get more tasks in proportion to their size, which is reasonable as
they get their work done faster. As a result, the capacity pools end up balancing the

i
Cmin smin

i
i

Cmin smin
Cme

Cmin < Cme ⋅ smin Cmin
smin

 31

© ByteNite Inc., 2023 WP v2.1 — Core System

throughput vs. workload ratio over the grid and optimizing the speed of the overall execution.
Even though this might seem sufficient, there are several other measures to make the task-
processing workflow more efficient, which I will discuss in the following paragraphs.

3.3.5. Distribution Process

The distribution process is a workflow run across the partitioner and the feeder in charge of
managing the distribution and supervising the processing of tasks over the grid for any given
job. It is activated with the job submission workflow and continues until all the tasks have
been retrieved, verified, and transmitted to the assembler.

First, the partitioner creates a stream that uploads the user’s data in chunks. The chunks’ size
and distribution depend on the data and an application-specific partitioning rule. The
partitioner sends every chunk to the feeder on the fly. The feeder accordingly forms tasks by
putting together a chunk, the computing application, and all the metadata needed by the
worker device. On the Core System, every task has a record with a unique identifier and
information such as the ByteChip bounty, the expected processing time, the target capacity
pool, and the application parameters.

Next, the process creates a specific queue of tasks for every pool (the pool queues), filling
each with the same number of newly produced tasks, ready to be deployed (see Figure 7). At
this point, the feeder does not notify devices about the assignment of a task, but it is up to
each device to query ByteNite’s server and pick the next available task in its pool queue.
Each device can keep two tasks simultaneously, one being processed while the other is
downloaded, to absorb the time for data transfers as much as possible (Figure 8).

When a task is completed, it is uploaded to the Core System according to the workflow
examined in Figure 4. The validator will check the task’s integrity, like size, length, or data
type. If the tasks has a replica, the last completed replica will be used by the validator to
check the correctness of the computation. When any of these validations have been passed,
the task is moved to the assembler, which will progressively rebuild the output and terminate
as soon as the last task has arrived.

The reverse assignment enforced by the pool queues guarantees a “first come, first served”
concept that stimulates competition in each pool about who is the fastest to query a new
task, complete it, and query more. It all benefits the overall performance. However, the
performance could still be endangered by processing failures or delays. In the following
paragraph, I will explain the threats posed by such shortcomings, and discuss both a-priori
and a-posteriori measures to contain them.

 32

© ByteNite Inc., 2023 WP v2.1 — Core System

Figures 7 & 8 — The pool queues of tasks before and after being deployed. Tasks are equally
distributed to the queues as soon as they are produced. The worker devices periodically query the
server requiring new tasks: the fastest to reach the Tasks API will get the next task in the queue, while
the slow or temporarily unavailable ones might miss the opportunity to process.

 33

© ByteNite Inc., 2023 WP v2.1 — Core System

3.3.6. Fault Tolerance

Whenever a worker device doesn’t respond as expected during the processing of a task, the
overall performance of the job is endangered. To illustrate, suppose that a job requires the
execution of 12 tasks, as in Figures 7 & 8, and that every task takes a maximum of 40 seconds
to be downloaded, processed, and uploaded by either device. If six devices are processing
the tasks as in the picture, and no failure occurs, we should expect all tasks to come back in
80 seconds, and the job to be finished in a little more than that. However, suppose only one
device, the device processing tasks H and M, fails. In that case, the system has to reschedule
the tasks on a new machine. Depending on when the failure occurred, it can take up to 40
additional seconds to get the job done, or a 50% increase in time. This is assuming that the
rescheduled tasks don’t fail or that figure can even grow further.

Generalizing the previous simple argument, the exposure to frequent and stochastic faults in
the grid can determine severe delays and nullify ByteNite’s intelligent scheduling efforts if not
dealt with properly. Although there is no ultimate solution to prevent or fix such delays, some
strategies help mitigate them.

Before exploring such strategies, I shall briefly overview the possible causes of task failure.
There are three types of faulty operations on a task:

• Raising of an execution or transfer error.  
This happens when a task can’t be fully downloaded or uploaded by the assigned device
or can’t be successfully processed on it and returns an error to the Core System.

• Delayed task or unresponsive device. 
In this case, the “delayed” task’s state is not updated by the device, but by the Core
System after multiple attempts to connect to the device.

• Incorrect or partial result. 
A task fails when it outputs a partial or incorrect result. To establish a benchmark for any
result that is suspiciously incorrect, besides meeting expected or desired output metadata
(size, length, etc.), ByteNite can run the same task on a trusted machine and compare
results or use a replica processed by another device.

In addition, for each of these failures, ByteNite should establish whether the fault is due to the
worker or ByteNite itself in order to compute a fair fault rate (see §3.3.2.2). ByteNite might
inadvertently match tasks with unsupported devices or wrong App versions, or deploy
inherently faulty applications. Despite being very careful about sending unverified
executables or deploying untested releases, these situations are possible. That’s why
ByteNite runs double-check tests on trusted machines, and only when none of these tests fail
is the failure blamed on the worker.

Two strategies help minimize the delays occurring when tasks unexpectedly fail: one operates
a-priori, or before any failure occurs, and the other a-posteriori, or as a consequence of the
failure.

3.3.6.1. Replication Strategy (A-Priori)

As a preliminary measure to fight task failures and consequent performance losses, ByteNite
introduces a standard in distributed computing: a replication strategy. The reader can find a
full-length analysis of the statistical framework behind this paragraph in the Appendix.

 34

© ByteNite Inc., 2023 WP v2.1 — Core System

The rationale behind the replication strategy is that since only one result is needed by each
task to deem it completed, we could be confident that at least one task wouldn’t fail if we
sent the same task to several different devices. To reword this in technical terms, introducing
task replicas helps reduce the joint probability of failure for a set of identical tasks.

The strategy is based on the definition of a parameter, , called the replication factor, which
sets the number of replicas of the tasks. If is the number of unique tasks that a job
generates, then the total number of tasks (original and replicas) will be:

Task replicas are not treated differently from their originators. In fact, every replica is
deployed to the grid as a standard task and follows the same rules of the scheduling
algorithm. The only way it is linked to the original task is a simple task identifier and a replica
count.

The replication factor can be a decimal number. In such cases, only a portion of the tasks are
replicated or further replicated (e.g., if , half of the tasks are replicated once). To
decide which tasks are replicated and which are not, I propose a model, better detailed in
the Appendix, that sorts the tasks according to the fault rate of the expected assigned
devices. Hence, the tasks expected to be assigned to devices with a higher fault rate are
replicated first. In practice, the mathematical model shows that the maximum benefit occurs
when assuming integer numbers, e.g., 2 or 3, and the benefit increases with .

By having multiple devices work on the same tasks, the replication strategy not only has the
effect of containing joint failures, but it allows us to exploit the best performance over every
replica set. As a matter of fact, the partitioner uses the first returned result of each replica set
to build the final output and uses the possible other returned replicas for validation. However,
setting a higher replication factor implies using more computing power and possibly involving
more devices than would normally take part in a job’s processing. ByteNite burdens the
increase in resource usage demanded by replication partly on the user — by increasing the
job’s price for higher replication factors — and partly on the workers — by splitting the bounty
across different replicas.

Although a theoretical approach provides a benchmark for weighing scheduling decisions, it
doesn’t explain how to enforce a timely communication of a task’s failure, nor a strategy to
solve the corner case where all replicas fail. A practical, a-posteriori strategy is thereby
needed.

3.3.6.2. Fault Response Strategy (A-Posteriori)

Before a task result is spontaneously sent from a device to ByteNite and is accordingly
tagged as completed or failed, some time passes. Usually, a task doesn’t last more than one
or a few minutes, as ByteNite’s philosophy is based on a real-time, disposable supply of
computing resources. During that time, there is no assurance that the task will be completed
in the near future, nor that it will be completed at all. That’s where the constant monitoring of
the active devices, also anticipated in Figure 4, comes into play. The following diagram
explains the feeder's workflow to monitor the active devices and promptly take action when
a failure or delay is encountered. It is based on the definition of two timeouts and , and
it ends by switching the task’s state into one of “COMPLETED”, “FAILED”, or “STALE”. Whenever
the task has one of the last two states, the feeder looks for replicas of that task: if none is in

r
m

M = ⌊r ⋅ m⌋

r = 1.5

r r

T1 T2

 35

© ByteNite Inc., 2023 WP v2.1 — Core System

process or completed, the ultimate response to the fault is to reschedule the task on a fast,
trusted device.

Figure 9 — The fault response workflow. The term “heartbeat” refers to a simple periodic signal
generated by the worker device, communicating its regular operation to the Core System. 

 36

© ByteNite Inc., 2023 WP v2.1 — Bibliography

Bibliography

[1]	 B. A. Sosinsky, Cloud Computing Bible, 1st edition ed. (Bible v.757). Indianapolis, Ind:
Wiley (in English), 2011.

[2]	 M. Bote-Lorenzo, Y. Dimitriadis, and E. Gómez-Sánchez, "Grid Characteristics and
Uses: A Grid Definition," 2004, pp. 291-298.

[3]	 L. Ferreira and O. International Business Machines Corporation. International Technical
Support, Introduction to grid computing with Globus, 2nd ed. (IBM redbooks). San Jose, CA:
IBM Corp., International Technical Support Organization (in English), 2003.

[4]	 I. Foster, Y. Zhao, I. Raicu, and S. Lu, "Cloud Computing and Grid Computing 360-
Degree Compared," Cloud Computing and Grid Computing 360-Degree Compared, vol. 5,
01/31 2009, doi: 10.1109/GCE.2008.4738445.

[5]	 R. Buyya. "Grid Computing Info Centre (GRID Infoware)." http://
www.gridcomputing.com/ (accessed 2022).

[6]	 R. Buyya and K. Bubendorfer, Market-oriented grid and utility computing (Wiley series
on parallel and distributed computing). Hoboken, N.J: John Wiley & Sons (in English), 2010.

[7]	 P. B. Charlie Catlett, Dane Skow and Ian Foster, "Creating and Operating National-
Scale Cyberinfrastructure Services," CTWatch Quarterly, vol. 2, May 2006. [Online]. Available:
https://icl.utk.edu/ctwatch/quarterly/print.php%3Fp=35.html.

[8]	 T. G. Alliance. "The Globus Toolkit." http://toolkit.globus.org/ (accessed 2022).

[9]	 I. Foster and C. Kesselman, "The Globus project: a status report," Future Generation
Computer Systems, vol. 15, no. 5, pp. 607-621, 1999/10/01/ 1999, doi: https://doi.org/10.1016/
S0167-739X(99)00013-8.

[10]	 "SETI@Home." University of California, Berkeley. https://setiathome.berkeley.edu/
(accessed 2022).

[11]	 "BOINC." University of California, Berkeley. https://boinc.berkeley.edu/ (accessed
2022).

[12]	 D. P. Anderson, "BOINC: a system for public-resource computing and storage," in Fifth
IEEE/ACM International Workshop on Grid Computing, 8-8 Nov. 2004 2004, pp. 4-10, doi:
10.1109/GRID.2004.14.

[13]	 "List of volunteer computing projects," in Wikipedia, 2022 ed.

[14]	 "Einstein@Home." https://einsteinathome.org/ (accessed 2022).

[15]	 "World Community Grid (WCG)." Krembil Research Institute. https://
www.worldcommunitygrid.org/ (accessed 2022).

[16]	 "climateprediction.net." University of Oxford. https://www.climateprediction.net/
(accessed 2022).

 37

© ByteNite Inc., 2023 WP v2.1 — Bibliography

[17]	 "distributed.net." https://www.distributed.net/ (accessed 2022).

[18]	 "HTCondor." HTCondor Team, Center for High Throughput Computing, Computer
Sciences Department, University of Wisconsin-Madison, WI. https://htcondor.org/ (accessed
2022).

[19]	 D. Thain, T. Tannenbaum, and M. Livny, "Distributed computing in practice: the Condor
experience: Research Articles," Concurrency - Practice and Experience, vol. 17, pp. 323-356,
02/01 2005, doi: 10.1002/cpe.938.

[20]	 A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S. Pande, "Folding@home:
Lessons from eight years of volunteer distributed computing," in 2009 IEEE International
Symposium on Parallel & Distributed Processing, 23-29 May 2009 2009, pp. 1-8, doi: 10.1109/
IPDPS.2009.5160922.

[21]	 "Livepeer." https://livepeer.org/ (accessed 2022).

[22]	 D. Petkanics and E. Tang, "Livepeer whitepaper," Technical report, Livepeer, 2018.

[23]	 "Theta Network." https://www.thetatoken.org/ (accessed 2022).

[24]	 "Sweatcoin." https://sweatco.in/ (accessed 2022).

[25]	 "Pi White Paper," SocialChain, Inc., 2019. Accessed: December 2022. [Online]. Available:
https://minepi.com/white-paper

[26]	 "The Golem Project," Golem Factory GmbH, 2016. Accessed: 2022. [Online]. Available:
https://whitepaper.io/document/21/golem-whitepaper

[27]	 "CUDOS." https://www.cudos.org/ (accessed 2022).

[28]	 "CUDOS White Paper," Cudos Limited, 2021. Accessed: 2022. [Online]. Available:
https://www.cudos.org/wp-content/uploads/2021/11/cudos-white-paper.pdf

[29]	 G. Fedak, W. Bendella, and E. Alves, "iExec - Blockchain-Based Decentralized Cloud
Computing (Whitepaper)," iExec, 2018. [Online]. Available: https://iex.ec/wp-content/
uploads/2022/09/iexec_whitepaper.pdf

[30]	 R. B. Uriarte and R. DeNicola, "Blockchain-Based Decentralized Cloud/Fog Solutions:
Challenges, Opportunities, and Standards," IEEE communications standards magazine, vol. 2,
no. 3, pp. 22-28, 2018, doi: 10.1109/MCOMSTD.2018.1800020.

[31]	 "SONM Supercomputer Organized by Network Mining," SONM, 2017. Accessed: 2022.
[Online]. Available: https://whitepaper.io/document/326/sonm-whitepaper

[32]	 A. Chandra, J. Weissman, and B. Heintz, "Decentralized Edge Clouds," IEEE Internet
Computing, vol. 17, no. 5, pp. 70-73, 2013, doi: 10.1109/MIC.2013.93.

[33]	 M. Arslan, I. Singh, S. Singh, H. Madhyastha, K. Sundaresan, and S. Krishnamurthy,
Computing while charging: Building a distributed computing infrastructure using
smartphones. 2012, pp. 193-204.

[34]	 H. Ba, W. Heinzelman, C.-A. Janssen, and J. Shi, Mobile computing -A green
computing resource. 2013.

 38

© ByteNite Inc., 2023 WP v2.1 — Bibliography

[35]	 C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. A. Khan, and H. Debnath, "Avatar:
Mobile Distributed Computing in the Cloud," in 2015 3rd IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering, 30 March-3 April 2015 2015, pp. 151-156,
doi: 10.1109/MobileCloud.2015.22.

[36]	 D. Díaz-Sánchez, A. Marín-López, F. Almenares, R. Sanchez, and P. Cabarcos, Flexible
Computing for personal electronic devices. 2013, pp. 212-213.

[37]	 Z. Dong et al., "REPC: Reliable and efficient participatory computing for mobile
devices," 2014 11th Annual IEEE International Conference on Sensing, Communication, and
Networking, SECON 2014, pp. 257-265, 12/16 2014, doi: 10.1109/SAHCN.2014.6990361.

[38]	 I. Foster, "What is the Grid? A Three Point Checklist," GRID today, vol. 1, pp. 32-36, 01/01
2002.

[39]	 G. Massari, M. Zanella, and W. Fornaciari, "Towards Distributed Mobile Computing," in
2016 Mobile System Technologies Workshop (MST), 23-23 Sept. 2016 2016, pp. 29-35, doi:
10.1109/MST.2016.13.

[40]	 I. Raicu et al., "Toward loosely coupled programming on petascale systems," in SC '08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, 15-21 Nov. 2008 2008,
pp. 1-12, doi: 10.1109/SC.2008.5219768.

[41]	 I. Raicu, Y. Zhao, I. Foster, and A. Szalay, "Accelerating Large-scale Data Exploration
through Data Diffusion," CoRR, vol. abs/0808.3546, 01/01 2008, doi: 10.1145/1383519.1383521.

[42]	 W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. M. Leung, "Decentralized
Applications: The Blockchain-Empowered Software System," IEEE Access, vol. 6, pp.
53019-53033, 2018, doi: 10.1109/ACCESS.2018.2870644.

[43]	 Z. Hong, Z. Wang, W. Cai, and V. C. M. Leung, "Connectivity-Aware Task Outsourcing
and Scheduling in D2D Networks," in 2017 26th International Conference on Computer
Communication and Networks (ICCCN), 31 July-3 Aug. 2017 2017, pp. 1-9, doi: 10.1109/
ICCCN.2017.8038386.

 39

© ByteNite Inc., 2023 WP v2.1 — Appendix

Mathematical Appendix

I. Replication Strategy

In this section, I describe a statistical framework for the replication strategy introduced in
§3.3.6.1. I detail the assumptions based on the available information of the grid state, set
certain goals of the analysis, and finally lay down the calculations that bring to the solution.

In the scenario of assigning tasks to the computational grid, let’s define two strategies: a
simple strategy , where tasks aren’t replicated, and a replication strategy , where

 devices are involved in the computation of unique tasks.

Depending on , the tasks can be replicated a different number of times. Suppose that
we can schedule each task to a specific device in advance. Suppose further that it is
possible to estimate the probability that device will fail, independently on the task, and call
it . A possible estimate of is the fault rate of a device introduced in §3.3.2.2. Now, let’s

order the devices from the one with the highest probability of failure, or the least
reliable, , to the one with the lowest probability of failure, or the most reliable, . Calling

the task executed on device , the replica assignment in works as follows:

•  
The last devices are assigned the same tasks of the first .  
This implies for  

There is no replica of tasks and there are replicas of
tasks.

•  
The first devices are assigned the same task of the second devices. The last
devices are assigned the same tasks of the first devices. 
This implies for and in addition for  

There are replicas of tasks and there are replicas of tasks. 

m
S R

M = ⌊r ⋅ m⌋ m

r ≥ 1

i
pi pi

i = 1,…, M
p1 pM ti

i R

1 ≤ r < 2
M − m M − m

ti = ti+m i = 1,…, M − m
2m − M 2 M − m = ⌊(r − 1)m⌋

beginning of 1st
replicas

tm tm+1 ⋯⋯ tM−m tM−m+1t1 ⋯ tM

2 ≤ r < 3
m m M − 2m

M − 2m
ti = ti+m i = 1,…, m ti = ti+2m i = 1,…, M − 2m

2 3m − M 3 M − 2n

beginning of 1st
replicas

beginning of 2nd
replicas

t2mtM−2m t2m+1⋯t1 tM−2m+1 ⋯ ⋯tm+1⋯ tm tM

 40

© ByteNite Inc., 2023 WP v2.1 — Appendix

•  
There are replicas of tasks and replicas of tasks.

Let a set of independent variables for be given, each

representing the outcome of a task on a device , where is the failure event occurring

with probability . Note that “ ” implies that the devices are ordered from the least

reliable to the most reliable.

Problem

• Find the expression for the probability of joint failure of at least one set of replicas, in and

in . I’ll generally abbreviate this probability as PJF. Then, I’ll call the expression found with
the first strategy , and the expression found with the replication strategy .

• Find a rule to set a minimum such that the probability of joint failure is below a selected
threshold.

Solution in

In the simple strategy , the PJF is simply the probability of a single task failure:

Therefore, .

Furthermore, if we model , then .

Solution in , case

Switching to the replication strategy , the probability that at least one set of replicas
fails is no more equal to the probability of failure of at least one task, because the replica(s)
of the failed task might be completed. In this case, the event we’re looking for is when a task
and all its replicas fail simultaneously.

In order to find , we begin with the strategy , where the total number of tasks

is such that . 
In this case, the PJF is equal to the probability that at least one couple of replicas fails or that
at least one of the non-replicated tasks fails:

a ≤ r < a + 1
a (a + 1)m − M a + 1 M − am

Xi ∼ Be(pi), pi ≥ pj i < j
i Xi = 1

pi pi ≥ pj

S
R

PS PR

r

S
S

PS = ℙ(
m

∑
i=1

Xi ≥ 1) = 1 − ℙ(
m

⋂
i=1

{Xi = 0}) = 1 −
m

∏
i=1

ℙ(Xi = 0) = 1 −
m

∏
i=1

(1 − pi)

1 − (1 − pm)m ≤ PS ≤ 1 − (1 − p1)m

pi = p ∀i PS = 1 − (1 − p)m

R 1 ≤ r < 2
R PR

PR 1 ≤ r < 2 M
m ≤ M < 2m

PR = ℙ
M−m

⋃
i=1

{Xi = 1, Xi+m = 1} ∪
m

⋃
j=M−m+1

{Xj = 1} : = ℙ(A ∪ B) = ℙ(A) + ℙ(B) − ℙ(A ∩ B)

 41

© ByteNite Inc., 2023 WP v2.1 — Appendix

Since the events in and involve variables in different ranges, which are independent,
and are independent as well. Thus:

In addition,

Let us then find and separately:

Therefore,

When we model the probabilities , the latter has a simpler form:

A B A
B

PR = ℙ(A) + ℙ(B) − ℙ(A)ℙ(B) = ℙ(A)[1 − ℙ(B)] + ℙ(B)

P(A) = ℙ({Xi = 1, Xi+m = 1}) = ℙ({Xi = 1})ℙ({Xi+m = 1}) = pi pi+m ∀i

ℙ(A) ℙ(B)

ℙ(A) = ℙ(
M−m

⋃
i=1

{Xi = 1, Xi+m = 1})
 = 1 − ℙ(

M−m

⋂
i=1

{Xi = 1, Xi+m = 1}C)
 = 1 −

M−m

∏
i=1

ℙ({Xi = 1, Xi+m = 1}C)

= 1 −
M−m

∏
i=1

[1 − ℙ({Xi = 1, Xi+m = 1})]
 = 1 −

M−m

∏
i=1

(1 − pi pi+m)

ℙ(B) = ℙ
m

⋃
j=M−m+1

{Xj = 1} = ℙ
m

∑
j=M−m+1

Xi ≥ 1 = 1 −
m

∏
j=M−m+1

(1 − pj)

PR = [1 −
M−m

∏
i=1

(1 − pi pi+m)] ⋅
m

∏
j=M−m+1

(1 − pj) + 1 −
m

∏
j=M−m+1

(1 − pj)

pi = p ∀i

PR = [1 − (1 − p2)M−m] ⋅ [(1 − p)2m−M] + 1 − (1 − p)2m−M

 = (1 − p)2m−M − (1 − p)m(1 + p)M−m + 1 − (1 − p)2m−M

 = 1 − (1 − p)m(1 + p)M−m

 42

© ByteNite Inc., 2023 WP v2.1 — Appendix

What is, hence, the minimum that binds this probability to be lower than a pre-set
threshold ?

The previous expression lets us set a desired amount of single replicas to constrain the PJF
with , when the probabilities are uniform. However, with the assumption that a task cannot
have more than one replica, not every desired probability threshold can be chosen, as the
following line shows:

For

It is clear from the previous consideration that, in order to decrease at will and be as
confident as needed that a joint failure won’t occur, we should introduce more than one
replica. Before generalizing the formula to any number of replicas, let us see a couple of
examples with this model.

• Example 1

Suppose we have estimated a uniform fault rate of based on the history
of similar tasks, where on average out of trials on a device returned a negative
response. 

 = 1 − (1 − p)m(1 + p)⌊rm⌋−m

1 ≤ r < 2
δ

PR ≤ δ ⇔ 1 − (1 − p)m(1 + p)⌊(r − 1)m⌋ ≤ δ

 ⇔ (1 + p)⌊(r−1)m⌋ ≥
1 − δ

(1 − p)m

 ⇔ ⌊(r − 1)m⌋ ≥
log(1 − δ

(1 − p)m)
log(1 + p)

 ⇔ (r − 1)m ≥
log(1 − δ

(1 − p)m)
log(1 + p)

 ⇔ r ≥ 1 +
1
m

⋅
log(1 − δ

(1 − p)m)
log(1 + p)

δ
δ

δ > 1 − (1 − p)m(1 + p)⌊(r − 1)m⌋ > 1 − (1 − p)m(1 + p)m = 1 − (1 − p2)m

1 ≤ r < 2

δ

R = 0.05 %
1 2000

 43

© ByteNite Inc., 2023 WP v2.1 — Appendix

The partitioner has produced unique tasks for . Our customer wants its

job processed quickly and demands a PJF of at most .

Question: How should we pick ?

Solution: According to the 2-replica model, the minimum to satisfy the customer’s
requirement is:

In other words, tasks should be produced overall, of which are
replicas. The task assignment should then follow the rule described at the beginning
of the section, where tasks assigned to the most faulty devices get a replica. However,
in this case, only tasks are left without a replica.

Question: How low can the customer go with , in the 1-replica model?

The customer can be satisfied down to

• Example 2

The target subset of devices now has a more varied fault rate: old-generation
smartphones have a ; new-generation smartphones are way more reliable
with ; laptop and desktop computers are extremely stable and very rarely
fail: ; finally, a set of devices connected with specific networks often
encounter communication issues and therefore fail to complete their task. For the last
set of devices, it has been observed that they fail in cases, with a standard
deviation of . 
Suppose that the scheduling algorithm selects the following pools over the target
subset: old-generation smartphones, new-generation smartphones,
laptop and desktop computers, and devices with bad internet connection.

Question: How should we pick to face the same demand of the customer ()
for a job with unique tasks?

Solution: In this case, we must use the model with heterogeneous . In addition, for
illustrative purposes, we might either use the mean or a pseudo-random generator to
simulate the ’s of the last set of devices. We opt for the second one.  
Using a scientific calculator, it turns out that the customer cannot be satisfied in this

m = 10,000 j
δ = 1%

r

r

r = 1 +
1

10,000
⋅

log(1 − 0.01

(1 − 0.0005)10,000)
(1 + 0.0005)10,000 = 1.9985

⌊r m⌋ = 19,985 9,985

15

δ

δ = 1 − (1 − 0.00052)10,000 = 0.250%

R = 4 %
R = 0.1 %
R = 0.005 %

R = 30 %
σ = 13.4 %

700 6,800 1,600
900

r δ = 1%
m = 5000

pi

pi

 44

© ByteNite Inc., 2023 WP v2.1 — Appendix

case, as is the minimum probability achievable when . The profile of
 functio is the following, given the other parameters as above.

As it's clear from the last example, the lower bound for in the 1-replica model might be too
high for certain probability configurations. 
One can reasonably comment that the previous examples employed imaginary probabilities
and that the real ones can be way lower. 
Nonetheless, customers must be able to require any level of regardless of the state of the
grid. Hence, it is not sufficient to stop our analysis at the level .

Solution in , general case

The results for the 1-replica model easily generalize to the case ,
where, following the task assignment previously defined, a total of tasks are
replicated times, and the remaining tasks have replicas. Let’s call the PJF
in the general case, and let’s write and simplify its expression:

 
where and are independent events (they involve mutually independent variables).

Let’s find first:

26,40% r = 2
PR(r)

δ

δ
1 ≤ r < 2

R
a ≤ r < a + 1 , a ∈ ℕ

(a + 1)m − M
a M − am a + 1 Pa

R

Pa
R = ℙ

M−am

⋃
i=1

a+1

⋂
k=1

{Xi+(k − 1)m = 1} ∪
m

⋃
j=M−am+1

a

⋂
k=1

{Xi+(k − 1)m = 1} : =

 : = ℙ(A ∪ B) = 1 − ℙ(AC ∩ BC) = 1 − ℙ(AC)ℙ(BC)

A B

ℙ(AC)

 45

© ByteNite Inc., 2023 WP v2.1 — Appendix

where is a collection of independent events, and so is the

collection of their complementaries. Therefore:

In a similar way, it can be proven that:

The final formula is then:

Equation – The Probability of Joint Failure’s general formula, as a function of the replication coefficient
, the number of unique tasks , and the probabilities of failure sorted in

descending order.

In the homogeneous assumption , and the general PJF boils down to:

ℙ(AC) = ℙ
M−am

⋂
i=1 (

a+1

⋂
k=1

{Xi+(k − 1)m = 1})
C

=

 { ∩a+1
k=1 {Xi+(k − 1)m = 1}}

M−am

i=1

 =
M−am

∏
i=1

ℙ(
a+1

⋂
k=1

{Xi+(k − 1)m = 1})
C

 =

 =
M−am

∏
i=1 [1 − ℙ(

a+1

⋂
k=1

{Xi+(k − 1)m = 1})] =

 =
M−am

∏
i=1

(1 − ∏
a+1

k=1
pi+(k − 1)m)

ℙ(BC) =
m

∏
i=M−am+1

(1 − ∏
a

k=1
pi+(k − 1)m)

Pa
R = 1 −

M−am

∏
i=1

(1 − ∏
a+1

k=1
pi+(k − 1)m) ⋅

m

∏
i=M−am+1

(1 − ∏
a

k=1
pi+(k − 1)m)

a = ⌊r⌋ , M = ⌊r ⋅ m⌋

r m pi, i = 1,…, ⌊r ⋅ m⌋

pi = p

Pa
R = 1 − (1 − pa+1)M−am ⋅ (1 − pa)(a+1)m−M

 = 1 − (1 − p⌊r⌋+1)
⌊rm⌋−⌊r⌋m

⋅ (1 − p⌊r⌋)
⌊r⌋−(⌊rm⌋−⌊r⌋m)

 46

© ByteNite Inc., 2023 WP v2.1 — Appendix

Finally, pooling all the models together, we can define a function of the replication coefficient
, by simply replacing with :

The following example shows that multiple replicas can lead to adequate values of even
when the fault rates are very high.

• Example 3

Suppose that the phone company XYZ, issuing a large share of the US mobile traffic, is
experiencing a general breakdown and its users get randomly and independently
disconnected from the network every now and then. As a consequence, the
estimated fault rates of such devices are . 
Suppose further that the current grid is composed of the same devices as in Example
2, namely devices with heterogeneous probabilities of failure ranging from

 to . In addition, we have available an unlimited number of
devices connected through the XYZ company’s network.

Question: In a job with unique tasks, what is the optimal replication
coefficient for which the constraint is met?

Solution: When we allow multiple replicas, the probability function assumes the
following profile:

From the picture, it is clear that the PJF is always a decreasing function of . For this
job in particular, the highest loss in the PJF is obtained when switching from no
replicas () to one replica (). However, in this case, we should go beyond two
replicas in order to achieve a constraint of . We observe that the further we
increase , the lower the benefit from replication; indeed, the function has a negative
exponential behavior, as it can be deducted from its expression. 
The same plot in log-scale makes the point where the constraint is met more visible:

r a ⌊r⌋

PR(r): = P⌊r⌋
R

PR

R = 35% ± 12 %

10,000
0.005% 30% ± 13.4%

m = 5000
r ≥ 1 δ = 1%

r

r = 1 r = 2
δ = 1%

r

 47

© ByteNite Inc., 2023 WP v2.1 — Appendix

The optimal , computed with an iterative non-linear equation solver, is around
. 

r
3.956822

 48

© ByteNite Inc., 2023 www.bytenite.com

Contact

https://www.bytenite.com

• Phone: +1 415-723-2082

• Info & inquiries: info@bytenite.com

• CEO: fabio@bytenite.com 
CTO: niccolo@bytenite.com

ByteNite Inc.

708 Long Bridge Street 
Apt. 916 
San Francisco, CA 94158 
United States

 49

https://www.bytenite.com
tel:+1%20415-723-2082
mailto:info@bytenite.com
mailto:fabio@bytenite.com
mailto:niccolo@bytenite.com

	State Of The Art
	What is ByteNite
	Core System
	Bibliography
	Mathematical Appendix

