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Summary


This White Paper describes in full detail a model for a new commercial grid computing 
implementation called “ByteNite”. I open the Paper with the state of the art of the distributed 
computing models, including an overview of cloud and grid computing, their commonalities 
and history, and how they are topical in today’s world (§1. State Of The Art). I build the 
foundations of our work through a critical insight that triggers powerful implications in 
connection with the current technologies: the availability of a gigantic computing capacity 
inside worldwide consumers’ and businesses’ devices, enhanced by the cloud computing 
model (§1.3. Fact). I address the new proposed model through a description of the system, its 
overall operation, the underlying business concepts, and the innovative value proposition (§2. 
What Is ByteNite). I then dive into its architecture and workflow design, delineating its 
structure, key features, and the chronological phases of its activity (§3. Core System). The 
paper then reveals the main algorithm running in the core system and its inputs. This last 
section (§3.3. Business Logic) includes all the relevant details about how does ByteNite 
manage the workload, including the type of information collected from the workers and the 
users, the creation of specific grid indexes, a scheduling algorithm, a distribution process, and 
a fault tolerance mechanism. 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1. State Of The Art

In the IoT and Big Data era, cloud computing and distributed file systems are fundamental 
for data management and processing. Big tech firms and their server farms are the most 
valuable resource we can rely on today for outsourcing computations; edge computing has 
become indispensable in many applications as the volume of data produced daily by 
businesses is increasingly significant.


Years of technological advancement have paved the way to bring cloud computing towards 
Industry 4.0, making it possible for a wide range of cloud solutions to become a reality, 
bringing innovation and efficiency to business processes and changing our lifestyles. Many 
new businesses that operate in the cloud sector, such as Snowflake, Cloudflare, Databricks, 
emerged in the past fifteen years, and well-known tech industry leaders Google, Microsoft, 
Amazon, and IBM, could become or remain IT giants as a result of their readiness to seize the 
cloud’s opportunity.


Cloud computing is more than renting someone else’s machines: it encompasses workload 
management, service orchestration, distributed storage, and much more. However, it all boils 
down to the target machine’s computing power provided by its processor when it comes to 
throughput and performance. After all, as B. Sosinsky [1] has said, “cloud computing is 
revolutionary, even if the technology it is built on is evolutionary.”


With the benefit of hindsight in a fully digitalized era, have we ever tried to unwrap cloud 
computing and question if there is more we can learn from its foundations? Furthermore, as 
the on-premise commercial model has shifted to cloud computing with the advent of the 
internet, what will the increase in worldwide connectivity and the rise of 5G turn the cloud 
model into?


1.1. Grid vs. Cloud Computing

The invention described in this White Paper mostly conforms to the techniques dictated by 
the “grid computing” model. However, several other topics and frameworks can be deemed 
relevant to this invention, including utility or on-demand computing, high-throughput 
computing, distributed computing, and, most of all, cloud computing. Grid and cloud 
computing share several key traits, such as their reliance on distributed resources. Still, they 
differ slightly in many domains, including business model, architecture, resource 
management, and application model. Today, grid computing has evolved to become the 
basis of the more advanced cloud, offering more robust performance in a secure virtual 
environment. Yet, I am convinced that there is much value left behind in this transition, and no 
project or initiative has been able to seize and implement it at scale so far. I shall begin this 
introduction with a brief overview of the two paradigms, as per current scientific literature, 
and then review both past and current grid computing projects. I will then establish the 
grounds of our theory, shedding light on the immense opportunity that grid computing 
represents in today’s technologically evolving world (§1.2), and finally lay down our value 
proposition (§2.1).
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The term “grid computing” refers to a form of distributed computing featuring heterogeneous 
and geographically dispersed resources provided by different organizations. Grids were 
developed in the mid-1990s to provide a solution for large-scale computational tasks that 
required significant processing power, only affordable by supercomputers back then. 
According to Bote-Lorenzo et al. (2004): 


 A grid can be defined as a large-scale geographically distributed hardware and 
software infrastructure composed of heterogeneous networked resources owned and 
shared by multiple administrative organizations which are coordinated to provide 
transparent, dependable, pervasive and consistent computing support to a wide 
range of applications. These applications can perform either distributed computing, 
high throughput computing, on-demand computing, data-intensive computing, 
collaborative computing or multimedia computing. [2]


A year later, in 2005, IBM’s Introduction to Grid Computing put the grid computing definition 
closer to a ‘virtualization’ concept that would become the key principle of the cloud: 


If we focus our attention on distributed computing solutions, then we could consider 
one definition of grid computing to be distributed computing across virtualized 
resources. The goal is to create the illusion of a simple yet large and powerful virtual 
computer out of a collection of connected (and possibly heterogeneous) systems 
sharing various combinations of resources. [3]


Virtualization turned out to be a big win in the utility computing model: it allowed 
applications to be abstracted from the underlying fabric and deployed on-demand to more 
exacting customers. That’s how we arrived at cloud computing. Subsequently, its rapid 
adoption from the mid-2000s was fostered by the decrease in hardware cost and increase in 
computing power and storage capacity, as well as the exponentially growing size of data 
and processing power used by modern internet applications and services.


Cloud computing delivers different levels of scalable and dynamically configurable services 
to customers outside the cloud. A comprehensive definition of cloud computing is given by 
one of its ancestors, Ian Foster, in his article “Cloud Computing and Grid Computing 360-
Degree Compared” (2009):


[cloud computing is] a large-scale distributed computing paradigm that is driven by 
economies of scale, in which a pool of abstracted, virtualized, dynamically-scalable, 
managed computing power, storage, platforms, and services are delivered on demand 
to external customers over the Internet. [4]


The virtualization feature of cloud computing is key to providing the necessary abstraction to 
deliver on-demand computing power, storage, and networking and to meet stringent 
service-level agreements (SLAs) with customers. It is more difficult to find this level of 
virtualization in standard grid implementations, as each organization within a grid usually 
maintains complete control over its resources.


On the architecture level, grids and clouds share a fabric layer consisting of the raw 
hardware resources and the protocols to access them. While clouds provide a unified 
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resource layer to virtualize such resources and expose them to end-user applications, grids 
feature a more complex set of standard protocols, middleware and toolkits to connect and 
manage resources. 


Finally, ensuring interoperability and security are fundamental both for grid and cloud 
infrastructures. While in grids interoperability comes built-in (they are based on the 
assumption that resources are heterogeneous and dynamic), clouds have developed 
stronger security policies to comply with regulatory standards. The combination of such 
properties in cloud-powered grid computing systems might prove a critical vision for the 
future of the cloud in the 2020s.


1.2. Grid Computing Today

Nowadays, most grid computing initiatives around the world have given way to more modern 
and service-oriented cloud computing applications. Many grid middleware implementations 
and grid infrastructures built in the 2000s have either ceased operating, turned into cloud 
projects, or been acquired by cloud computing companies. 


United Devices Inc., a commercial volunteer computing company offering high-performance 
computing services, was sold in 2007 to Univa, a software company that developed cloud 
management products, which was in turn acquired by cloud software company Altair 
Technologies. DataSynapse was sold in 2009 to TIBCO Software Inc., a business intelligence 
software company, and their grid computing middleware was turned into a BI product 
powered by parallel computing. A different fate awaited companies like Entropia, Inc. and 
Popular Power, developers of distributed computing software for CPU scavenging, which 
were driven out of business. And so on: the list of companies born in the new millennium trying 
to ride the wave of grid computing is long [5]. It is no mystery why they all failed in a matter of 
years: while they were able to develop large-scale computing infrastructure by accessing the 
spare processing capacity of thousand of volunteered CPUs, these companies didn’t offer 
any reward to their contributors. Consequently, the resource owners had no incentive for their 
continued contribution, and the economic model proved not scalable nor maintainable [6]. 
Given those years’ computing and network capabilities, the only companies that managed 
to survive were those that were noticed and acquired by larger corporations, which could 
afford substantial infrastructure investments to keep up with the incoming cloud wave. 


In the volunteer computing world, grids made a name for themselves in the 2000’s through 
scientific projects that gained much attention in the academic community. Either 
infrastructure-based as TeraGrid [7], middleware-based like the Globus Toolkit [8, 9], or 
application-based like SETI@Home [10], these projects were aimed at empowering scientific 
research in disparate fields (Physics, Medicine, Astronomy, Mathematics, Biology), making it 
possible to solve computationally intensive problems that would have been difficult or 
infeasible to tackle using standard computers. Some historic volunteer computing projects 
made their way through the 21st century and are still working in 2022. Their participation was 
primarily motivated by non-monetary prizes, fun, fame, or collaborative advantage. If not for 
the economic model, they are interesting to analyze as technically feasible grid computing 
projects. Hence, I shall give a quick overview of them.


The most representative is BOINC [11, 12], a platform for distributed high-throughput 
computing where worker nodes are desktop and laptop computers, tablets, and 
smartphones volunteered by their owners. A fair number of applications or “projects” are 
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linked to BOINC and use or have used its distributed computing infrastructure to solve large-
scale scientific problems that could once be tackled only by supercomputers [11, 13]. 
SETI@Home was the first, and was responsible with giving BOINC the popularity it later had. 
SETI@Home was devoted to the Search for Extra-Terrestrial Intelligence through distributed 
digital signal processing of radio telescope data. A week after its launch, SETI@Home scored 
200,000 participants. After four or five months, it broke one million, and later reached over 
two million users. In 2020 the project officially ceased operations. Other remarkable BOINC-
powered projects include: Einstein@Home [14] for the search of weak astrophysical signals 
from spinning neutron stars; World Community Grid [15] for scientific research  on topics 
related to health, poverty, and sustainability; and Climateprediction.net [16] for climate 
models simulations. 
Distributed.net [17] was another volunteer computing project that attempted to to solve 
large-scale problems, and was governed by a non-profit US corporation. As of 2019, 
distributed.net’s throughput was estimated at roughly 1.25 petaFLOPs. Recently, 
distributed.net has joined forces with BOINC with the aim of finding mathematical solutions 
to cryptographic algorithms. 
Another operating volunteer computing project is HTCondor [18, 19], an open-source 
distributed computing software that enables the increase of computing throughput, 
developed at the University of Wisconsin-Madison. HTCondor provides a job queueing 
mechanism,  a scheduling policy, a priority scheme, and a resource monitoring and 
management tool, and can integrate dedicated resources (rack-mounted clusters) and non-
dedicated desktop machines into one computing environment.  
Finally, a distributed computing project that has lately gained a broad consensus due to new 
discoveries regarding SARS-CoV-2 is Folding@Home [20]. The main aim of this project is to 
understand protein dynamics by means of statistically distributed simulations. In 2020 the 
computing speed of Folding@Home peaked at 2.43 exaFLOPS, a power in the order of one 
billion billion floating point operations per second, or enough to mine a Bitcoin in ten 
seconds.


Although these projects are of great help for research, they won’t be able to unlock the full 
potential of a worldwide grid. Their genesis and purpose keep them away from reaching a 
wider audience and becoming marketable products. The replicability of any of these models 
on the market is not only prevented by the lack of a well thought-out payment framework, 
but especially by the lack of a performance-oriented resource management system built 
with modern and widely adopted standards and protocols. 


Starting in 2010, a new distributed technology started bringing collaborative computing back 
into the spotlight. A new global paradigm was established and many companies followed by 
building products on top of it, or creating private sub-networks to capitalize on what proved 
to be more than a brand-new concept. I am referring to the blockchain and all the 
blockchain-powered dApps (decentralized applications) that have been implemented 
thanks to the wild proliferation of this technology. A dApp is an open-source software 
application that runs on a peer-to-peer blockchain network. dApps are built for disparate 
use cases across various industries, including finance and payments, gaming, supply chain, 
user-generated content networks, and distributed computing.  
The latter use case is relevant to our framework, as it involves dApps that exploit member 
devices’ processing power and network to improve and democratize access to CPU- or GPU-
intensive digital services. Some notable implementations of decentralized computing involve 
video streaming (Livepeer [21, 22], Theta Network [23]), mobile blockchain mining (Sweatcoin 
[24], MinePi [25]), and general-purpose computing (Golem [26], Cudos [27, 28], iExec [29]). 
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These applications usually use Ethereum or purpose-minted coins for collecting and 
distributing payments, and they handle crypto transactions and task validation with smart 
contracts. Ethereum also provides these dApps solutions for guaranteeing distributed 
consensus and identity management.


A question that might arise is how Ethereum and, generally, blockchain technology actually 
empower distributed computing on the processing side. The answer is simple: it doesn’t. 
Uriarte, R.B. and DeNicola, R. (2018) [30], from IMT School for Advanced Studies of Lucca, have 
analyzed the architectures of three blockchain-based decentralized cloud solutions. Their 
finding is that in all three projects, smart contracts, payments, and reputation are managed 
in a “transaction network” built on the blockchain, while the actual computing services are 
executed in a “side-chain network” charged with processing, negotiation, and verification of 
computing tasks. As the paper highlights, the results obtained from a collaborative, 
distributed computing network might be chaotic and heterogenous; hence, the side-chain 
network reveals a non-deterministic behavior that must be mediated in order to reach a 
consensus in the transaction network, and a specific component is needed to interface 
between the two networks. This adds complexity to the already high computational cost of 
running and maintaining a blockchain. 


There are other elements holding back Ethereum and other blockchain technologies from 
implementing a large-scale, efficient grid like the one discussed in this White Paper. Two of 
them are the high transaction costs and the capped transaction throughput (Ethereum can 
process less than 30 transactions per second), which both pose serious threats to 
performance and scalability. Another shortcoming is the almost absent definition of Quality 
of Service in most dApps’ smart contracts, or even in their general terms and conditions. 
Besides signaling an inability to control and measure the average processing performance, 
the absence of QoS makes big customers, which are seldom unconcerned with quality 
guarantees, shy away from blockchain-powered computing solutions. 


Finally, it is worth mentioning that, despite being the core philosophy of such dApps, the 
restriction to support only crypto wallets and cryptocurrency transactions cuts off the vast 
majority of both resource providers and cloud computing customers, who normally do 
business with fiat currencies and are still — and possibly forever — crypto-averse.


1.3. Fact

In 2023, an immense underlying computational power is widespread throughout the globe 
and sits idle most of the time. Altogether, it overcomes the joint processor capacity of the 
biggest cloud providers by tens of times. 
More than 12 billion computers, smartphones, tablets, and other commercial electronic 
devices are hiding immense potential, especially now that they’re shipped with ever more 
performing hardware (see Figure 1), and are unexploited during the inactivity of their human 
owners, like during the night. Not only are electronic consumer devices underused: many 
businesses owning disparate hardware, from video production facilities to private data 
centers and office desktop computers, don’t know how to use it when it’s not at work.


Past and existing grid computing projects have shown us the potential of building a 
distributed computing farm by tapping into a category of machines not originally sold to 
fulfill utility computing purposes — the mass consumer technology. However, such a vast 
unused computational power couldn’t be easily gathered and connected until a few years 
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ago because of major technological limitations, including the average network speed, 
network coverage, and the hardware capacity of common devices on the market. In 
addition, the attempts to build a global grid have been held back by exclusively technology-
geared visions and major market misunderstandings, largely attributable to shortsighted or 
too-technical founders, that entailed failing execution strategies and limited outcomes.


Today, the easy and fast access of any device to the internet and the virtualization provided 
by the cloud make it possible to collect and utilize the vast worldwide computing potential in 
a distributed computing system, reviving the already-known paradigm of grid computing 
and enhancing it with the reliability, scalability, and automation provided by the cloud. 
However, the lessons learned from the past make us steer clear of development strategies 
that have grid technology as the only guiding star. For such a massive commercial project to 
be successful, any development choice, from architecture to applications, must be driven by 
evident market demands and clear economic visions, that spur the adoption of grid 
computing as key to solving market-inherent cost-benefit problems.





Figure 1 — CPU performance of desktop, laptop and server computers from 2004 to 2022. Courtesy of 
PassMark Software. 

                                                                                                                                                 6

https://www.passmark.com/


© ByteNite Inc., 2023                                                                                           WP v2.1 — What is ByteNite

2. What is ByteNite

ByteNite is a commercial, centralized, service-oriented grid computing system based on 
subscriber devices' processing capacity, realizing a high-throughput computing environment 
for utility computing purposes. Rather than an online marketplace, where buyers and sellers 
are directly put into contact, ByteNite creates two different and separate hubs that are 
accessible by the purchasers of computing services (“users” or “customers”) and by the 
suppliers of computing power (“workers” or “suppliers”), respectively, brokering the 
management of computational resources to keep the two segments well coordinated and 
functioning. 


The three components that build up ByteNite’s grid computing system are the following:


• Core System: the core middleware, or backend layer, responsible for managing, scheduling, 
retrieving, transforming, transitioning, sending, organizing, and validating the users’ 
computational jobs. It stores and makes accessible the users’ and workers’ data, including 
job history, activity, wallet balances, and device info. It also generates quotes, collects 
users’ payments, and distributes rewards to workers.


• ByteNite Computing Platform: a user-level middleware available as a software-as-a-
service platform, accessible through a web UI or an API, exposing both ready-made and 
custom-made computing services (“applications”) to customers. On the platform, users can 
configure, submit, and pay for computing jobs, as well as upload and download their data 
(inputs and outputs), and view their job history, jobs states, and summary usage. They can 
automate the execution of their jobs via recurring tasks and automation pipelines.


• ByteNite Worker App: software that runs on workers’ devices and enables them to receive, 
queue up, process, send back, and clear up computing tasks, according to programs 
shipped with each task and running inside the App. The Worker App also makes available 
the summary of completed tasks and their credits; hence, it allows workers to redeem their 
credits by converting them into several forms of reward, including cash.


In other words, ByteNite provides software to connect the users to the system, schedule the 
workload, and connect the computational grid to the system. The workers supply the fabric 
layer consisting of distributed computing resources, and users provide all the inputs that feed 
the applications, including data.


ByteNite stands in the market as a provider of high-throughput computing services. It targets 
small- and medium-sized companies seeking faster performance at more affordable prices 
than the cloud, and enterprises that operate with big volumes of data daily who need to 
speed up their workflows. In both cases, ByteNite helps fulfill performance goals for specific 
applications that generate loosely coupled or independent tasks.  
ByteNite will develop three target applications that represent its core mission and an 
extraordinary market opportunity: Video Encoding (market size: $1.07B, 4.26% CAGR), 
Graphics Rendering ($2.59B, 20.9% CAGR), and Computer Vision ($12.72B, 16% CAGR). In 
addition to being three of the most intensive commercial computing activities, these 
applications are well-suited for distributed computing as each of them generates workloads 
that can be divided into multiple, independent smaller tasks.  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ByteNite’s customers will be also provided with the tools to develop their own distributed 
applications to run on the grid resources using ByteNite Computing Platform. We can find a 
variety of use cases for such tailor-made solutions in the media & entertainment industry, as 
well as in the financial and healthcare sectors.


On the other side, ByteNite offers a chance to make passive income out of ordinary devices, 
like personal and office computers, smartphones, tablets, small servers, and eventually a 
wider range of IoT devices like video game consoles, TVs, home appliances, and industrial 
electrical machinery. Whilst in 2022 we have online marketplaces to effortlessly sell or rent out 
almost everything from material belongings to volatile goods like electricity, it is not yet 
possible to rent out our devices’ exceeding computing capacity in the matter of a few 
minutes. ByteNite brings together technology to enable such a monetization possibility with a 
smooth onboarding of the workers, by streamlining the workflow and condensing all the 
interactions into a single piece of software, the ByteNite Worker App.


2.1. Innovation

ByteNite is the first distributed computing solution to combine the following 
accomplishments:


• Uses heterogeneous, cross-platform, both mobile and desktop devices located anywhere 
as worker nodes;


• Creates a computing-capacity sharing economy based on the trade of distributed 
processing tasks with real money;


• Is open to everyone;

• Constantly monitors performance and automatically turns it into business requirements and 

price adjustments;

• Manages non-deterministic behaviors with a centralized scheduling system based on both 

a-priori and a-posteriori fault-tolerant techniques.


ByteNite has the mission of becoming the first worldwide grid powering a general-purpose 
high-throughput computing system, where everybody can build and run their own distributed 
applications or use ready-made flagship computing products. 


ByteNite’s values can be described as follow:


• Availability 
The extension of ByteNite’s grid, together with its devices' diversification, geographical 
distribution, and heterogeneous connectivity, allows and guarantees flexible provisioning of 
computing resources at any time.


• Agility 
The commodification and customization of computing services, plus the existence of an 
optimal delivery pipeline, make the entire process from data ingestion to output upload 
extraordinarily agile.


• Speed 
The more nodes in the grid, the less time is needed to process partitioned jobs. This fact 
makes ByteNite competitive and preferable to the classic cloud and on-premise computing 
for various use cases.
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• Sustainability 
Deploying distributed computations on existing and commonly active devices is an 
environmentally-friendly alternative to using server farms, provisioning new hardware, and 
building new infrastructure. ByteNite's distributed computing model guarantees an inherent 
heat dispersion from devices’ processors that are connected from different locations, which 
eliminates the need for artificial cooling of rack-mounted servers. In addition, old or unused 
devices can be turned into ByteNite “workers” instead of winding up in the trash, thereby 
lowering the pollution caused by electronic waste.


• Security 
Data is at the core of ByteNite's business, and so is cybersecurity. All data coming to and 
from ByteNite’s system is encrypted and handled in isolated runtime environments, and 
workers are constantly monitored and readily excluded if deemed potentially malicious. In 
addition, ByteNite’s reliance on a robust and certified cloud grants it ready and updated 
cybersecurity policies and implementations that are now standard for all cloud-based 
software companies.


2.2. Business Model

ByteNite creates an ecosystem where buyers of computing services can find solutions, and 
hardware owners can receive compensation for supplying their devices’ computing power. To 
enable such a marketplace, ByteNite charges customers on a pay-per-use basis: the 
proceeds are then divided into a “user rewards” share (70%) and a ByteNite share (30%). Given 
ByteNite’s cloud infrastructure costs, like egress, storage, and peripheral computing, a fair 
estimate of the gross profit margin can be 20%.


To keep track of inbound and outbound transactions in all currencies and fulfill internal 
bookkeeping, ByteNite introduces a utility currency, or fake coin, called “ByteChip", whose 
value can be altered at any time to keep up with economic developments. The value of a US 
dollar in ByteChips ( ) on the date of this publication is:


ByteChips are used throughout ByteNite’s system to purchase and sell computing services. 
Users can buy ByteChips on the Computing Platform and spend them on computing services. 
Every application has its pricing table or formula, and users can simulate the cost of their jobs 
through the platform. 


On the other side, workers accrue ByteChips for every completed task. Every task has a 
“bounty” attached, which expresses the amount of ByteChips due to the worker for correctly 
processing it. The bounty, or prize, is proportional to the relative size of the task’s input chunk 
to the total job’s data, according to this formula:





Equation 1 — Formula for the ith task bounty. The term in parentheses represents the total workers’ 
reward share for a given job;  is the dimension of the ith chunk;  is the dimension of the job’s 
data.


 = $1 200

bountyi = ( job price ⋅ 0.7) ⋅
sizei

job size

sizei job size
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Failed tasks don’t spawn rewards, while replicated tasks bear a portion of the total task 
bounty. Finally, workers can use their ByteChips to purchase affiliated items on the Worker 
App, like gift cards, discounts, and online subscriptions, or they can redeem money in their 
currency via a bank transfer from ByteNite.


ByteNite uses Stripe to handle money transactions from the users to ByteNite and from 
ByteNite to the workers, outsourcing all the issues related to tax, currency conversion, and 
anti-fraud to said service.


2.3. Glossary

Before diving into the system’s description, I shall provide a list of terms to minimize possible 
ambiguities throughout the text and help the reader get acquainted with our terminology. 


Term Description Example

active 
devices

The devices that are currently available, or 
equivalently have a ByteRank greater than 
0

active grid The portion of the grid composed of active 
devices

application same as computing application

ByteNite’s utility currency, used by 
customers to purchase computing 
services, and by workers to redeem 
rewards 

A user can buy a $0.30-worth 
job using 60 ByteChips. A worker 
can convert 3K ByteChips into a 
wire transfer of $15.

capacity 
pool

Group of devices selected to process a 
fixed amount of tasks. Changes from job to  
job.

A group of 45 active devices, 
with a capacity score spanning 
from 2800 to 1700

computing 
application

Any distributed computing program 
chosen or submitted by a customer, and 
eventually run in the grid through the 
Worker Apps 

A Python program implementing 
video encoding with FFmpeg

Computing 
Platform

ByteNite’s software-as-a-service product 
where users can submit their high-
throughput computing jobs

app.bytenite.com

Core 
System

ByteNite's backend system, responsible for 
task management, data storage, 
payments, device monitoring, and much 
more

chunk A portion or segment (typically small) of 
the input data

10s of video

Term

ByteChip
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Table 1 — ByteNite’s dictionary. The terms listed here refer to specific subjects, transactional items, or 
programming components that pertain ByteNite’s system and products 

customer Like “user”, but with a connotation of 
physical buyer person 

The chief engineer at a video 
streaming company, or a private 
visual content creator

grid The network of worker devices intended as 
a virtual collection of computing nodes 
equipped with middleware

job A unit computational goal submitted by a 
user, expecting an input and an output

The encoding of a video file

node A worker device or a group of tightly 
coupled worker devices owned by the 
same worker

A set of 10 office computers 
owned by worker “John B.”

supplier Same as “worker”

target 
subset

The list of devices selected for a job after 
they have passed the eligibility test

task A unit computational activity destined for 
execution on the worker devices, 
comprising a chunk, an executable or 
program, and additional metadata

A .zip file containing 10s of video, 
the video encoding program, 
and summary information about 
the original video

task 
bounty

An amount of ByteChips representing the 
value of a task, that is credited to a 
worker’s wallet upon completing the task 

A 15-second video encoding 
task worth 2 ByteChips

user The digital identity of a buyer of ByteNite’s 
computing services

An ID record like “5ZSWt76”

worker The party supplying the computing power 
of its device(s) via the Worker App

A 20-year-old girl owning a 
smartphone and a computer, or 
Intel Corporation

Worker 
App

The software running on the worker 
devices that allow them to process 
ByteNite’s tasks and the workers to cash 
out the rewards

worker 
device

Each of the devices that run the Worker 
App

A Samsung Galaxy A53 5G, or an 
HP Windows computer

Description ExampleTerm
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3. Core System

In this section, I shall give an overview of how ByteNite works from a backend perspective: 
how its Core System is structured, which components are responsible for running the services, 
what the most relevant workflows are, and how monitoring and scheduling mechanisms work.


3.1. Architecture

ByteNite’s Core System has a micro-services architecture. Each service represents an 
independent and scalable backend component running in the cloud and interfacing with the 
Worker App, the Computing Platform, and the other components through dedicated APIs. 
The architecture diagram is depicted in Figure 2.


The following internal services run the business logic (see §3.3), and are not exposed publicly:


• The Partitioner verifies the integrity of data uploaded by users through the Computing 
Platform, and splits it into smaller chunks suitable for worker devices. A task record is 
created for every chunk, and the record ID is queued on a job-specific Redis queue.


• The Feeder manages and supervises the entire task scheduling system. It takes tasks from 
job-specific queues and puts them in a global task queue ready to be consumed by the 
Tasks API. Tasks are sorted according to a scheduling algorithm (§3.3.4) that considers the 
availability of computing resources in the grid, the job’s requirements, and the user’s 
preferences.


• The Validator verifies the integrity and correctness of results sent by the worker apps. 
Different jobs could use different validators.


• The Assembler collects completed and validated tasks from the Validator and assembles 
them into larger chunks until it has rebuilt the full processed data file, which is uploaded to 
a cloud storage bucket accessible from the Computing Platform. 


• The Reward System is responsible for clearing ByteChip transactions between ByteNite 
and the workers and ensuring that all balances are constantly updated.


The customer APIs handle communication with the Computing Platform:


• The Jobs APIs allow the Computing Platform to create and configure new jobs, send input 
data, send and receive state updates, and fetch download links.


• The Billing API allows the Computing Platform to access billing and payment information.


Similarly, the worker APIs connect the Core System with the Worker Apps:


• The Tasks APIs allow the Worker App to fetch new tasks, download data and programs, 
and send back results or abort the task.
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• The Wallet API allows the Worker App to get the ByteChip balance and history. It can also 
request and record ByteChip expenditures in services or payouts.


• The Devices API connects to Firebase to fetch information about task and device states, 
user authentication, and device preferences. This is the only server-side component that 
connects to Firebase.


Finally, ByteNite’s data is sorted and stored in the following components:


• The Cloud SQL Database is a SQL database that supports atomic transactions. It stores 
all data with persistence and consistency priorities over access performance.


• The Firebase Database stores all device-related information like hardware specifications 
and device state and handles authentication. This is the only database that directly 
interfaces with the devices.


• The Redis Databases are fast databases for internal usage that handle short-run storage 
for frequent reads, writes, and inter-service messages.


• Cloud buckets are web-based folders with access restrictions that store files downloaded 
or uploaded by users.


3.2. Workflows

ByteNite fulfills its twofold mandate of collecting users’ jobs and distributing them to the grid 
through several recurring workflows. Each workflow is a set of rules and actions happening 
either in the Core System, on the Computing Platform, on the Worker App, or across them. 
Workflows are well-coordinated with the other processes and designed to make the whole 
execution fault-tolerant and agile. From a 360-degree perspective, the processing of a job 
can be summarized as follows:


When a new job is submitted on the Computing Platform, ByteNite sets up a pipeline 
between the user and the grid. First, the Feeder builds the framework of the scheduling logic 
for that specific job, and the Reward System estimates its cost. Hence, the job starts and the 
Job Upload API streams the input data to the Partitioner, creating chunks on the fly and 
passing them on to the Feeder. The Feeder wraps them with an executable, forming tasks 
that are scheduled and sent to the grid. The distribution logic established by the Feeder’s 
scheduling algorithm guarantees the abstraction of the scheduling from the actual delivery 
so that the process is completely automated and reliable. In particular, the algorithm of the 
Feeder enforces the concept of “first come, first served”, so that no data chunk needs to wait 
for a specific device to show up, but every chunk is appended to global queues from which 
the next available device can download it (see §3.3.5). Every device competes in the grid to 
process as many tasks as it’s eligible for, and its only assignment is to tune in with ByteNite’s 
server to wait for new tasks in the global queues, to process them and upload back the 
results (Figure 3). The grid responds asynchronously, sending back processed tasks from 
multiple devices. Several measures are adopted to guarantee hassle-free continuation of the 
processing (see §3.3.6) when node failures or delays are encountered. In any case, the 
workflow continues up to the moment when all tasks have been successfully processed, 
retrieved, and validated. Finally, the Assembler quickly rebuilds the integral output using 
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indexes contained in tasks’ metadata and uploads it to a Cloud bucket immediately 
available to the user.


All data that goes through the Core System is temporarily stored and released as soon as a 
job is completed, except for the final output which can be stored in a Cloud bucket for 24 
hours. Because neither the Partitioner nor any other services are tasked with the heavy lifting 
of data processing, ByteNite removes the need to maintain a high-capacity infrastructure. At 
the same time, ByteNite can control the inflow and outflow efficiently and insure the integrity 
and security of data processing.


In the following diagrams, I will detail two key workflows: the job submission workflow running 
across the Computing App and the Core System, and the task processing running on the 
Worker App.


Legend:





(continues on next page)


Yellow Control flow

Blue Remote procedures

Orange Local procedures

Green Start

Red End
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Figure 3 — The job submission workflow, running across the partitioner, the Computing Platform, and 
the Jobs API.
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Figure 4 — The task processing workflow allows the worker devices to ask for tasks from the Core 
System and process them.
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3.3. Business Logic

ByteNite’s innovative data partitioning and task distribution mechanism is ruled by a patent-
pending algorithm that implements and optimizes the business logic underlying the 
operational decisions, like which and how many tasks are assigned to each device for any 
given job. The algorithm is constantly updated by our team; however, I’d like to provide an 
overview of what the algorithm will grow into as development proceeds and more data 
points are collected. For ByteNite to fulfill its attributes of Availability, Agility, and Speed, it is 
critical that this mechanism will eventually work as efficiently as, for instance, Google’s 
PageRank. That’s why I will focus on the business advantages of specific flows and structures 
composing the algorithm, and I shall name the device ordering protagonist of this section 
“ByteRank”.


The first domain of information referred to as “grid indexes”, is described in §3.3.2. The grid 
indexes are job-independent parameters that optimize knowledge about devices by giving 
them a score, a ranking, and several flags. They are built by a function in the Feeder that 
continuously collects devices’ information and runs formulas. Next, I describe the scheduling 
algorithm in §3.3.4, which combines the grid indexes with the job’s information to produce a 
bespoke partitioning pattern and a distribution rule. Finally, I cover how said distribution rule 
is turned into an actual workflow (§3.3.5) and how failures and delays are handled (§3.3.6).


3.3.1. Global Inputs


ByteNite must have access to all the relevant information about any device’s state, any new 
job’s metadata, and any possible user’s preferences to understand how to efficiently assign 
tasks to the grid. This is a crucial responsibility that drives the performance of ByteNite’s 
computing service. In this paragraph, I shall list the types of information that ByteNite uses to 
feed the algorithm, which I generally refer to as “global inputs”.


3.3.1.1. Grid State

ByteNite collects devices’ static and dynamic data, (e.g., manufacturer specs and memory or 
network usage), and stores it in the Firebase database, which is updated every 30 seconds. 
Here is a list of monitored parameters on each worker device through the Worker App:


Parameter Update Example

Operating system One time Android, Windows

Processor’s manufacturer, 
family, and model

One time Intel i7-6700K

CPU cores One time 4

GPU model One time NVidia GeForce 8600M GT

RAM capacity One time 8 GB

Total storage capacity One time 256 GB
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In addition, ByteNite needs to know if the worker has specific usage limitations that are 
configurable from the Worker App:


Tables 2 & 3 — Parameters of the grid state. The first table shows the parameters the worker devices 
automatically send to ByteNite according to a schedule (“Update” column). The second table shows 
the worker’s preferences which are set once by the worker and updated at will.


This collection of information, plus other Firebase data like login and usage history, is 
associated with every device and jointly constitutes the “grid state”. The state is used to rank 
the devices according to their general availability and predisposition to perform computing 
tasks at any given time, as explained in §3.3.2.


3.3.1.2. Job Specification

The kind of information that a new job generates can be varied and unstructured. In the first 
place, it depends on the type of computing application, e.g., video encoding, text 
processing, or graphics rendering. Every supported application running on ByteNite must 
have a corresponding implementation on the Computing Platform (job templates and 
parameters schema), in the Core System (a bespoke partitioning tool), and on the Worker 
App (the actual distributed script that runs the application). Consequently, different 

Worker App’s online state 5s Online / Offline

Network connection type 30s Wi-Fi, 4G

Network connection speed 30s 46 Mbps

Network connection latency 30s 28 ms

IP address 30s 192.0.2.1, 
2001:db8:0:1234:0:567:8:1

Available (unused) RAM 30s 2.23 GB

Available (unused) storage 30s 145 GB

Battery percentage (if 
applicable)

30s 86%

Charging state 30s Plugged in, unplugged

Core temperature 30s 73 F

Parameter Update Example

Parameter Update Example

Scheduled availability Upon worker’s request SAT-SUN 01:00AM-12:00PM 
MON-FRI 00:00AM-07:00AM

Allowed network types Upon worker’s request Only Wi-Fi

Data traffic threshold Upon worker’s request Uncapped
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applications require different classes of data. In general, all these applications share two 
categories of input information besides the raw data:


• Metadata. May include any of the following:


• Job parameters. They are input by the user and used to configure the application and the 
job submission workflow. I’ll provide below a list of parameters for the Video Encoding 
application, with possible generalizations:


Tables 4 & 5 — The information contained in a job specification. Table 4 refers to all the metadata 
attached to a job or, equivalently, the description of the input data. Table 5 refers to the user-defined 
job parameters used to configure the applications.


3.3.1.3. Job Preferences

Before submitting a job, the user can specify other parameters, which allow to tweak the job 
execution’s speed, trustworthiness, and other factors. While these parameters don’t affect 
the specification of a job — meaning that the applications don’t use them — they affect the 
scheduling algorithm run by the partitioner and the feeder by reflecting the user’s 

Metadata Examples

Input format MP4, MKV, MOV 
OBJ, STL, STEP, 3DS

Input size 3.04 GB, 12 Mbps

Input length 30 min 
124 documents 
92,000 frames

Other type-specific data 60 fps, 1920x1080p, AVC

Application Parameter Examples

(any) Input source A link to a user-owned cloud 
bucket

(any) Output destination A bucket name, access key, 
and secret key, to save the 
output on a user-owned 
bucket 

Video Encoding Output format MP4, MKV, WebM

Video Encoding Output aspect 1280x720p, crop top & bottom 
by 10%, rotate 180° clockwise

Video Encoding Output video specs H.265, 30fps, VBR 700k

Video Encoding Output audio specs AAC, 2.0 channels, 48 kHz, 
192kbps

Video Encoding / 
Computer Vision

Output video filters Color correction, object 
detection
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preferences on how to execute the job. Below are the user’s preference parameters and their 
summary descriptions:


Table 6 — The job preferences expressed by the user. These inputs will drive the scheduling algorithm 
towards decisions that tweak the execution and performance of a job.


3.3.2. Grid Indexes


A set of summary metrics, or indexes, are computed and constantly updated to summarize 
and sort all the data points of the grid state and reflect every device’s availability and 
potential. I shall describe their composition and usage in the following paragraphs.


3.3.2.1. Capacity Score

The capacity score is a number expressing every device's availability and computing 
capacity on an increasing scale. It is computed through several additional indexes that 
quantify the device’s immutable computing capacity (e.g. processor type), and its dynamic 
availability (e.g. the network speed over time). The score is updated anytime one of its inputs 
changes, according to the update schedule presented in Tables 2 & 3. The capacity score is 
intended to prize more performing processors, strong network connections, and high RAM 
and CPU time availability.


The capacity score ( ) is the sum of the additional scores presented in Table 7:


User’s 
preference

Description Values Implementation

ByteLevel Sets the overall 
performance, in terms 
of speed and priority, of 
the job

• low

• balanced 

(default)

• high

The scheduling algorithm takes 
this choice into account to 
select specific capacity pools 
and a different task distribution 
that allow the job to get done 
faster (High) or slower (Low)

Trusted 
processing

Ensures that the 
customer’s data is 
processed only on 
verified nodes

• on

• off (default)

The scheduling algorithm filters 
out all the unverified devices in 
the grid when creating the 
target subset

Allowed 
regions

Specifies a set of 
geographical areas 
where ByteNite can 
send the user’s job to 
be processed by the 
local workers

• any (default)

• Americas

• Europe

• Asia and 

Pacific

The scheduling algorithm filters 
out all the devices outside the 
allowed regions when creating 
the target subset

Preferred 
hardware

Specifies a range of 
processors, machines, 
or device 
configurations to be 
used to process the job

• desktop 
computers


• GPUs

• Wi-Fi-

connected 
devices

The scheduling algorithm 
enforces the processing on the 
specified devices, though the 
target subset filter and a 
modification of the computing 
application

C
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processor score + network category score  +  network speed score  +   
	 + network stability score + RAM availability score + CPU availability score


Equation 1 — The capacity score's formula. Refer to Table 4 for the composition of each term.


Every term of the sum is already weighted to reflect the importance of its contribution to the 
capacity score (see column “Range” below). The minimum value of the capacity score is 0, 
and the maximum is 2700. Here is the description and composition of each term of the sum:


C =

Score Description Default Formula Range

Processor 
Score

Ranks all known 
processors’ based on 
their performance

250 External benchmarking 1 — 500

Network 
Category 
Score

Prizes more stable 
network connection 
types up to 300 points

100 • Fiber/Cable/DSL = 300

• Starlink = 100

• Mobile & other = 0

0 — 300

Network 
Speed Score

Prizes higher network 
speeds up to 1000 
points, with 70% of the 
prize concentrated 
between 0Mbps and 
200Mbps

100 0 — 1000

Network 
Stability 
Score

Prizes less variable 
network speeds over the 
last 10min interval up to 
300 points

100 0 — 300

RAM 
Availability 
Score

Prizes a RAM availability 
higher than 256MB up to 
300 points, with two 
thirds of the prize 
between 256MB and 
1024MB

100 0 — 300

CPU 
Availability 
Score

Prizes a CPU availability 
higher than 10% up to 
300 points, with two 
thirds of the prize 
between 10% and 50%, 
and max prize at 100%

100 0 — 300

 

 
 

 

score = max {0, L (1 − e−k(x−x0))}
x = available RAM in MB
L = 300
k = 0.00143048
x0 = 256

 

 
 

 
 

score =
1
2

L[(1 − e−kx) + (1 − e−k(uy))]
x = download speed
y = upload speed
L = 1000
k = 0.00601986
u = 1.66666667

 

 
where  and  are, 
respectively, the mean 
and the standard 
deviation of a sample of 
network speeds over the 
past 10 minutes

score = c ⋅ max {0, 1 −
σ
μ }

c = 300
μ σ

 
 

 
 

score = max {0, a x2 + bx + c}
x = percentage of available CPU

a = − 0.03333333
b = 7
c = − 66.66666667
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Table 7 — The list of scores that compose the capacity score. 


3.3.2.2. Fault Rate

The fault rate examines the past behavior of a device by counting the number of times it has 
failed or delayed the execution of tasks. Unlike the capacity score, which estimates the 
performance of a device, the fault rate forecasts the outcome of a task, which may be 
unrelated to the capacity score of the device that ran it. Suppose, for instance, that a very 
well-equipped Mac with a capacity score of 2400 has installed an application that conflicts 
with ByteNite’s process, causing the App to crash and the tasks to fail. Before the engineers 
manually exclude the device from the grid and send a notification to the worker, the Mac 
would keep getting a high number of tasks, and there would be no action to prevent further 
task failures. 


With the accountability of the past behavior expressed by the fault rate and the threshold 
flags discussed later in §3.3.2.4, it is possible to progressively discredit or rapidly exclude 
faulty devices from the task execution and trigger automatic quarantines and technical 
checks.


There are three types of faulty operation on a task: failure, delay, or incorrectness. The reader 
can explore about this topic further in §3.3.6. The fault rate takes the last 20 faulty operations 
that are attributable to the worker device and produces a number between 0 and 1 which is 
the average faulty operation occurrence. Here are the inputs used in the fault rate’s formula 
further down:


Table 8 — The fault rate’s inputs. Every vector records the last 20 outcomes of tasks run on a device.


Hence, the formula for the fault rate (  ) is:





Equation 2 — The fault rate’s formula. Refer to Table 5 for the definition of the variables , , and .  is 
the sample mean.


As explained later, the fault rate lowers a device’s ByteRank, but only up to the point where 
the faulty operations are frequent enough to trigger the temporary exclusion of the device 
from the ranking. A script regenerates a clean fault rate by resetting the vectors , , and  
to 0 after the device has been reviewed and any problem causing the repeated failures has 
been fixed.


Input Description Values Example

Failure state of the past 20 
processed tasks

1 = failed 
0 = succeeded

Delay state of the past 20 
processed tasks

1 = delayed 
0 = on time

Incorrectness state of the past 20 
processed tasks

1 = incorrect 
0 = correct

I I = (1, 0, 0, 0, 0, 0, 0, …)

F F = (0, 0, 1, 0, 1, 0, 0, …)

D D = (1, 1, 1, 0, 0, 0, 0, …)

R

R =
1
3 [μ( F ) + μ( D) + μ( I )]

F D I μ

F D I
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3.3.2.3. Repechage Lottery

The repechage lottery is a mechanism to grant low-ranked devices a second chance to 
prove they’re worth a higher ByteRank and receive more tasks. The entire grid is enrolled in 
the lottery, and the winners get their ByteRank increased by 100 positions relative to the 
ranking they would normally have without the lottery. The lottery is run daily, and the rank 
increase is valid for 24 hours. 


The lottery is based on a random draw where every device has a different probability of 
winning, and the outcome is positive or negative. The probability of winning (  ) is computed 
from the hours elapsed since the last processing of a task and is maximum at 12h elapsed, 
where it attains the value of 5%. While I’ll discuss the implementation of the repechage lottery 
in §3.3.3, I provide here the formula for the probability of winning, which is a grid index:


 
 






Equation 3 — Formula of the probability of winning the repechage lottery for a generic device.


This lottery has the effect of randomly pushing inactive devices up in the rankin. It tries to 
prevent high-performing devices from absorbing all ByteNite’s tasks and rewards. Since we 
expect no more than 5 devices out of 100 to be boosted daily, this alteration doesn’t disrupt 
ByteNite’s efficient ordering.


3.3.2.4. Threshold Flags

Although numerical indexes are helpful in discerning and ranking devices accurately, it is 
critical for ByteNite to identify which devices shouldn’t be enrolled in the scheduling algorithm 
at all and pass on that information to the feeder. Hence, I introduce indicators, or “flags”, that 
signal when certain grid values have been exceeded or switched. Each flag is part of a 
device state as recorded in the Core System and helps make scheduling decisions 
accordingly. Flags can capture the most obvious state changes, like the Worker App online 
state, or alarming values, like a low battery level. The following table shows the flags and their 
threshold or rules:


l

h = hours elapsed since the last task processing
c = 0.00256564
β = 0.16666667

l = c ⋅ h2e−βh

Flag Description Threshold value

Disconnected Indicates that a device is offline worker App’s online state = offline

Repeated failures Indicates that a device has a too 
high fault rate

Low battery Indicates that a device has a too 
low battery level

High temperature Indicates that a device has a too 
high core temperature

R > 0.5

battery percentage < 10 %

core temperature > 120∘F
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Table 9 — The threshold flags are raised on exceeding or matching specific threshold values of a 
device state. 


3.3.3. ByteRank


The grid indexes defined above are further summarized in an ultimate ranking that I call 
ByteRank. The ByteRank sorts all the devices in ByteNite’s grid according to their overall 
expected capability, intended as a measure that encompasses all the perspectives analyzed 
so far, from the expected performance expressed by the capacity score to the predicted 
probability of failure of the fault rate. A device's ByteRank ultimately answers the question, 
“how much potential does this device currently have relative to the other devices in the 
grid?”. In fact, it is also used to rule out flagged devices by setting their value to 0. That’s also 
why it must be deemed a primary reference for any scheduling choices.


The ByteRank is computed iteratively starting from the threshold flags, then the capacity 
score, and finally the fault rate. It outputs a unique positive number for every device 
representing the rank, or “0” if the device is excluded from the rank. The procedure that builds 
the ByteRank is described below.


Lottery script — runs once a day:


INPUT


 the vector of the devices’ probabilities of winning the repechage lottery


START


Generate a random variable from the Bernoulli distribution  for every device  in the grid.  
The outcome is a vector of  s and s, where “ ” means the device has won the lottery


END


Main script — runs every 30 seconds or less:


START


Build a linked list  containing the IDs of the  devices that are not flagged




Order the list according to the capacity score of the devices in descending order




Scan the list from bottom to top and, at iteration , push the  device by  positions towards the 

bottom, where  is the fault rate of such device (assuming the list numbering starts at )




Push each device that won the lottery by 100 positions toward the top of the list




The ByteRank of a device is its position in the list , or “0” if it is not found in the list


(l1, l2, l3, …, lM)

B(li) i
0 1 1

B m

i m − i ⌊i R⌋
R 0

B
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END

Algorithm 1 — The creation of the ByteRank.


Hence, the ByteRank of each device is the index of the ordered list representing all the 
currently available devices ranked according to their capacity score, fault rate, threshold 
flags, and outcome of the repechage lottery. The top-ranked device has a ByteRank of 1, 
and the bottom-ranked device has a ByteRank of  (a number lower or equal to the total 
number of worker devices ). I will refer to the devices with a ByteRank different than 0 as the 
“active devices”, and  as the size of the active grid.


In the following paragraph, I’ll discuss how the ByteRank and the other grid indexes turned 
into actionable parameters that feed the scheduling decisions any time a new job is 
submitted.


3.3.4. Scheduling Algorithm


The scheduling algorithm represents the core of the business logic of ByteNite. It decides how 
to prepare and assign tasks to a subset of the active grid. It comes into action at any job 
submission, and, in a matter of milliseconds, outputs a chunk distribution and a 
correspondence between device pools and chunk sizes to instruct the partitioning and 
distribution pipeline (see §3.3.5). Throughout the following paragraphs, I will describe how the 
scheduling algorithm works; I will refer to “the job” as a generic job submission and to “the 
ByteRank” and “the grid indexes” as a snapshot of the ByteRank and the grid indexes taken 
at the instant that job is submitted.


When the job’s metadata is acquired, the feeder reads the grid state and the grid indexes 
and, together with the partitioner, selects a subset of candidate devices through two 
operations: the election of eligible devices and the creation of capacity pools.


3.3.4.1. Eligibility

Before the task creation and assignment logic are built, the active devices are filtered to 
meet job-specific requirements. App version, device location, or other information about a 
device might prevent it from supporting the job, depending on the job’s compatibility and 
how stringent the user’s preferences are. To be deemed eligible for the job, a device must 
meet the following requirements, when applicable:


• Match the job’s hardware restrictions, like processor and GPU type;


• Match the job’s data exporting restrictions, or be located in the geographical area allowed 
by the job;


• Be a Trusted Node, if required by the job;


• Have installed a version of the App compatible with the job;


n
N

n
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The filtered list of active devices created in this step is called the “target subset” of the job 
and is passed on to the next stage of the algorithm. 




Figure 5 — The election of eligible devices and the creation of the target subset. Eligibility criteria 
include job-specific requirements and user preferences.


3.3.4.2. Capacity Pools

The clean and filtered Byte-ordered list of devices — the target subset — represents the 
ultimate array of candidate devices for the current job. At this point, if the workload were 
simply randomly assigned to the target subset, without prioritizing top-ranked devices over 
low-ranked ones, the utility of the ByteRank would cease. Considering that the target subset 
can potentially contain thousands of devices, and their actual performance can vary from a 
few seconds to a few minutes per task, it would be impossible to predict the final throughput 
if every device could fetch any tasks indiscriminately. Therefore, the question that motivates 
this paragraph is, “what is an efficient way to assign tasks to the target subset while 
maintaining a constant throughput all over it?”.


I propose a model consisting of the creation of device pools (“capacity pools”) working jointly 
with the task queuing system described in the distribution process (§3.3.5) to solve the 
workload assignment challenge proposed above. The capacity pools model is based on 
grouping the devices into clusters, or pools, according to their position in the ByteRank and 
their capacity score. The cumulative capacity score in every pool must be higher than a 
threshold, and the size of each pool cannot be smaller than another one. Therefore, the pools  
end up being balanced in capacity and size. The procedure to build the pools is as follows:


INPUT


The target subset  of the ByteRank for job  
The capacity scores of the grid  

The threshold minimum value  of the cumulative capacity score for a pool 
The minimum pool size 


START

Create a pool as a virtual collection of device IDs. 

Place the device at the bottom of the target subset (lowest ByteRank) in the pool





B( j ) j
(C1, C2, …, CM)

Cmin
smin
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Scan the target subset from bottom to top. 
At each iteration :


• if the last updated pool has a cumulative capacity score lower than  or a size lower than , 
merge the device  with the last updated pool


• else, create a new pool with device  and create a link from it to the previous pool




The resulting list of pools containing devices IDs are the capacity pools


END

Algorithm 2 — The creation of capacity pools





Figure 6 — The creation of capacity pools (visual). The target subset’s devices are grouped starting 
from the low-ranked, with the rule to create a new pool when either a minimum capacity or size has 
been reached. Later, pools are numbered in the reverse order, i.e. from top-ranked to bottom-ranked.


Although I won’t cover how  and  are set in this version of the paper, I’d like to note 

that, given the median capacity score of the target subset , it is suitable that 

 to avoid creating pools that are too large or too small. While  helps to 

create well-balanced pools where the overall Capacity is similar,  is a measure against 
the production of small high-capacity clusters that absorb too many tasks and no longer 
benefit from parallelization.


As explained in the distribution process, an equal number of tasks will be assigned to each 
capacity pool, and every device will be able to process only the tasks assigned to its pool 
with a queue inheritance mechanism.


The introduction of the capacity pools activates the potential of the grid indexes in 
connection with the execution of a job. Devices with lower capacity scores will tend to 
overcrowd the pools they have been assigned to, while top-ranked devices will be in 
moderately crowded pools. Since the tasks are distributed in equal numbers to each pool, 
the top-ranked pools will get more tasks in proportion to their size, which is reasonable as 
they get their work done faster. As a result, the capacity pools end up balancing the 

i
Cmin smin

i
i

Cmin smin
Cme

Cmin < Cme ⋅ smin Cmin
smin
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throughput vs. workload ratio over the grid and optimizing the speed of the overall execution. 
Even though this might seem sufficient, there are several other measures to make the task-
processing workflow more efficient, which I will discuss in the following paragraphs.


3.3.5. Distribution Process


The distribution process is a workflow run across the partitioner and the feeder in charge of 
managing the distribution and supervising the processing of tasks over the grid for any given 
job. It is activated with the job submission workflow and continues until all the tasks have 
been retrieved, verified, and transmitted to the assembler.


First, the partitioner creates a stream that uploads the user’s data in chunks. The chunks’ size 
and distribution depend on the data and an application-specific partitioning rule. The 
partitioner sends every chunk to the feeder on the fly. The feeder accordingly forms tasks by 
putting together a chunk, the computing application, and all the metadata needed by the 
worker device. On the Core System, every task has a record with a unique identifier and 
information such as the ByteChip bounty, the expected processing time, the target capacity 
pool, and the application parameters.


Next, the process creates a specific queue of tasks for every pool (the pool queues), filling 
each with the same number of newly produced tasks, ready to be deployed (see Figure 7). At 
this point, the feeder does not notify devices about the assignment of a task, but it is up to 
each device to query ByteNite’s server and pick the next available task in its pool queue. 
Each device can keep two tasks simultaneously, one being processed while the other is 
downloaded, to absorb the time for data transfers as much as possible (Figure 8).


When a task is completed, it is uploaded to the Core System according to the workflow 
examined in Figure 4. The validator will check the task’s integrity, like size, length, or data 
type. If the tasks has a replica, the last completed replica will be used by the validator to 
check the correctness of the computation. When any of these validations have been passed, 
the task is moved to the assembler, which will progressively rebuild the output and terminate 
as soon as the last task has arrived.


The reverse assignment enforced by the pool queues guarantees a “first come, first served” 
concept that stimulates competition in each pool about who is the fastest to query a new 
task, complete it, and query more. It all benefits the overall performance. However, the 
performance could still be endangered by processing failures or delays. In the following 
paragraph, I will explain the threats posed by such shortcomings, and discuss both a-priori 
and a-posteriori measures to contain them.
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Figures 7 & 8 — The pool queues of tasks before and after being deployed. Tasks are equally 
distributed to the queues as soon as they are produced. The worker devices periodically query the 
server requiring new tasks: the fastest to reach the Tasks API will get the next task in the queue, while 
the slow or temporarily unavailable ones might miss the opportunity to process.
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3.3.6. Fault Tolerance


Whenever a worker device doesn’t respond as expected during the processing of a task, the 
overall performance of the job is endangered. To illustrate, suppose that a job requires the 
execution of 12 tasks, as in Figures 7 & 8, and that every task takes a maximum of 40 seconds 
to be downloaded, processed, and uploaded by either device. If six devices are processing 
the tasks as in the picture, and no failure occurs, we should expect all tasks to come back in 
80 seconds, and the job to be finished in a little more than that. However, suppose only one 
device, the device processing tasks H and M, fails. In that case, the system has to reschedule 
the tasks on a new machine. Depending on when the failure occurred, it can take up to 40 
additional seconds to get the job done, or a 50% increase in time. This is assuming that the 
rescheduled tasks don’t fail or that figure can even grow further.


Generalizing the previous simple argument, the exposure to frequent and stochastic faults in 
the grid can determine severe delays and nullify ByteNite’s intelligent scheduling efforts if not 
dealt with properly. Although there is no ultimate solution to prevent or fix such delays, some 
strategies help mitigate them. 


Before exploring such strategies, I shall briefly overview the possible causes of task failure. 
There are three types of faulty operations on a task:


• Raising of an execution or transfer error.  
This happens when a task can’t be fully downloaded or uploaded by the assigned device 
or can’t be successfully processed on it and returns an error to the Core System.


• Delayed task or unresponsive device. 
In this case, the “delayed” task’s state is not updated by the device, but by the Core 
System after multiple attempts to connect to the device. 


• Incorrect or partial result. 
A task fails when it outputs a partial or incorrect result. To establish a benchmark for any 
result that is suspiciously incorrect, besides meeting expected or desired output metadata 
(size, length, etc.), ByteNite can run the same task on a trusted machine and compare 
results or use a replica processed by another device.


In addition, for each of these failures, ByteNite should establish whether the fault is due to the 
worker or ByteNite itself in order to compute a fair fault rate (see §3.3.2.2). ByteNite  might 
inadvertently match tasks with unsupported devices or wrong App versions, or deploy 
inherently faulty applications. Despite being very careful about sending unverified 
executables or deploying untested releases, these situations are possible. That’s why 
ByteNite runs double-check tests on trusted machines, and only when none of these tests fail 
is the failure blamed on the worker.


Two strategies help minimize the delays occurring when tasks unexpectedly fail: one operates 
a-priori, or before any failure occurs, and the other a-posteriori, or as a consequence of the 
failure.


3.3.6.1. Replication Strategy (A-Priori)

As a preliminary measure to fight task failures and consequent performance losses, ByteNite 
introduces a standard in distributed computing: a replication strategy. The reader can find a 
full-length analysis of the statistical framework behind this paragraph in the Appendix.
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The rationale behind the replication strategy is that since only one result is needed by each 
task to deem it completed, we could be confident that at least one task wouldn’t fail if we 
sent the same task to several different devices. To reword this in technical terms, introducing 
task replicas helps reduce the joint probability of failure for a set of identical tasks.


The strategy is based on the definition of a parameter, , called the replication factor, which 
sets the number of replicas of the tasks. If  is the number of unique tasks that a job 
generates, then the total number of tasks (original and replicas) will be:





Task replicas are not treated differently from their originators. In fact, every replica is 
deployed to the grid as a standard task and follows the same rules of the scheduling 
algorithm. The only way it is linked to the original task is a simple task identifier and a replica 
count. 


The replication factor can be a decimal number. In such cases, only a portion of the tasks are 
replicated or further replicated (e.g., if , half of the tasks are replicated once). To 
decide which tasks are replicated and which are not, I propose a model, better detailed in 
the Appendix, that sorts the tasks according to the fault rate of the expected assigned 
devices. Hence, the tasks expected to be assigned to devices with a higher fault rate are 
replicated first. In practice, the mathematical model shows that the maximum benefit occurs 
when  assuming integer numbers, e.g., 2 or 3, and the benefit increases with .


By having multiple devices work on the same tasks, the replication strategy not only has the 
effect of containing joint failures, but it allows us to exploit the best performance over every 
replica set. As a matter of fact, the partitioner uses the first returned result of each replica set 
to build the final output and uses the possible other returned replicas for validation. However, 
setting a higher replication factor implies using more computing power and possibly involving 
more devices than would normally take part in a job’s processing. ByteNite burdens the 
increase in resource usage demanded by replication partly on the user — by increasing the 
job’s price for higher replication factors — and partly on the workers — by splitting the bounty 
across different replicas.


Although a theoretical approach provides a benchmark for weighing scheduling decisions, it 
doesn’t explain how to enforce a timely communication of a task’s failure, nor a strategy to 
solve the corner case where all replicas fail. A practical, a-posteriori strategy is thereby 
needed.


3.3.6.2. Fault Response Strategy (A-Posteriori)

Before a task result is spontaneously sent from a device to ByteNite and is accordingly 
tagged as completed or failed, some time passes. Usually, a task doesn’t last more than one 
or a few minutes, as ByteNite’s philosophy is based on a real-time, disposable supply of 
computing resources. During that time, there is no assurance that the task will be completed 
in the near future, nor that it will be completed at all. That’s where the constant monitoring of 
the active devices, also anticipated in Figure 4, comes into play. The following diagram 
explains the feeder's workflow to monitor the active devices and promptly take action when 
a failure or delay is encountered. It is based on the definition of two timeouts  and , and 
it ends by switching the task’s state into one of “COMPLETED”, “FAILED”, or “STALE”. Whenever 
the task has one of the last two states, the feeder looks for replicas of that task: if none is in 

r
m

M = ⌊r ⋅ m⌋

r = 1.5

r r

T1 T2
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process or completed, the ultimate response to the fault is to reschedule the task on a fast, 
trusted device.





Figure 9 — The fault response workflow. The term “heartbeat” refers to a simple periodic signal 
generated by the worker device, communicating its regular operation to the Core System. 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Mathematical Appendix


I. Replication Strategy


In this section, I describe a statistical framework for the replication strategy introduced in 
§3.3.6.1. I detail the assumptions based on the available information of the grid state, set 
certain goals of the analysis, and finally lay down the calculations that bring to the solution.


In the scenario of assigning  tasks to the computational grid, let’s define two strategies: a 
simple strategy , where tasks aren’t replicated, and a replication strategy , where 

 devices are involved in the computation of  unique tasks. 


Depending on , the tasks can be replicated a different number of times. Suppose that 
we can schedule each task to a specific device in advance. Suppose further that it is 
possible to estimate the probability that device  will fail, independently on the task, and call 
it . A possible estimate of  is the fault rate of a device introduced in §3.3.2.2. Now, let’s 

order the devices  from the one with the highest probability of failure, or the least 
reliable, , to the one with the lowest probability of failure, or the most reliable, . Calling  

the task executed on device , the replica assignment in  works as follows:


•  
The last  devices are assigned the same tasks of the first .  
This implies  for  

There is no replica of  tasks and there are replicas of  
tasks.


•  
The first  devices are assigned the same task of the second  devices. The last  
devices are assigned the same tasks of the first  devices. 
This implies  for  and in addition  for  

There are  replicas of  tasks and there are  replicas of  tasks. 

m
S R

M = ⌊r ⋅ m⌋ m

r ≥ 1

i
pi pi

i = 1,…, M
p1 pM ti

i R

1 ≤ r < 2
M − m M − m

ti = ti+m i = 1,…, M − m
2m − M 2  M − m = ⌊(r − 1)m⌋

beginning of 1st 
replicas

tm tm+1 ⋯⋯ tM−m tM−m+1t1 ⋯ tM

2 ≤ r < 3
m m M − 2m

M − 2m
ti = ti+m i = 1,…, m ti = ti+2m i = 1,…, M − 2m

2 3m − M 3 M − 2n

beginning of 1st 
replicas

beginning of 2nd 
replicas

t2mtM−2m t2m+1⋯t1 tM−2m+1 ⋯ ⋯tm+1⋯ tm tM
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•  
There are  replicas of  tasks and  replicas of  tasks.


Let a set of independent variables  for  be given, each 

representing the outcome of a task on a device , where  is the failure event occurring 

with probability . Note that “ ” implies that the devices are ordered from the least 

reliable to the most reliable.


Problem

• Find the expression for the probability of joint failure of at least one set of replicas, in  and 

in . I’ll generally abbreviate this probability as PJF. Then, I’ll call the expression found with 
the first strategy , and the expression found with the replication strategy .


• Find a rule to set a minimum  such that the probability of joint failure is below a selected 
threshold.


Solution in 

In the simple strategy , the PJF is simply the probability of a single task failure:





Therefore, .


Furthermore, if we model  , then .


Solution in , case 

Switching to the replication strategy , the probability  that at least one set of replicas 
fails is no more equal to the probability of failure of at least one task, because the replica(s) 
of the failed task might be completed. In this case, the event we’re looking for is when a task 
and all its replicas fail simultaneously.


In order to find , we begin with the strategy , where the total number of tasks  

is such that . 
In this case, the PJF is equal to the probability that at least one couple of replicas fails or that 
at least one of the non-replicated tasks fails:





a ≤ r < a + 1
a (a + 1)m − M a + 1 M − am

Xi ∼ Be(pi),    pi ≥ pj i < j
i Xi = 1

pi pi ≥ pj

S
R

PS PR

r

S
S

PS = ℙ(
m

∑
i=1

Xi ≥ 1) = 1 − ℙ(
m

⋂
i=1

{Xi = 0}) = 1 −
m

∏
i=1

ℙ(Xi = 0) = 1 −
m

∏
i=1

(1 − pi)

1 − (1 − pm)m ≤ PS ≤ 1 − (1 − p1)m

pi = p  ∀i PS = 1 − (1 − p)m

R 1 ≤ r < 2
R PR

PR 1 ≤ r < 2 M
m ≤ M < 2m

PR = ℙ
M−m

⋃
i=1

{Xi = 1, Xi+m = 1}   ∪    
m

⋃
j=M−m+1

{Xj = 1}    : =   ℙ(A ∪ B) = ℙ(A) + ℙ(B) − ℙ(A ∩ B)
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Since the events in  and  involve variables in different ranges, which are independent,  
and  are independent as well. Thus:





In addition, 


Let us then find  and  separately:




















Therefore,





When we model the probabilities , the latter has a simpler form:











A B A
B

PR = ℙ(A) + ℙ(B) − ℙ(A)ℙ(B) = ℙ(A)[1 − ℙ(B)] + ℙ(B)

P(A) = ℙ({Xi = 1, Xi+m = 1}) =  ℙ({Xi = 1})ℙ({Xi+m = 1}) = pi pi+m     ∀i

ℙ(A) ℙ(B)

ℙ(A) = ℙ(
M−m

⋃
i=1

{Xi = 1, Xi+m = 1})
            = 1 − ℙ(

M−m

⋂
i=1

{Xi = 1, Xi+m = 1}C)
            = 1 −

M−m

∏
i=1

ℙ({Xi = 1, Xi+m = 1}C)

= 1 −
M−m

∏
i=1

[1 − ℙ({Xi = 1, Xi+m = 1})]
          = 1 −

M−m

∏
i=1

(1 − pi pi+m)

ℙ(B) = ℙ
m

⋃
j=M−m+1

{Xj = 1} = ℙ
m

∑
j=M−m+1

Xi ≥ 1 = 1 −
m

∏
j=M−m+1

(1 − pj)

PR = [1 −
M−m

∏
i=1

(1 − pi pi+m)] ⋅
m

∏
j=M−m+1

(1 − pj) + 1 −
m

∏
j=M−m+1

(1 − pj)

pi = p  ∀i

PR = [1 − (1 − p2)M−m] ⋅ [(1 − p)2m−M] + 1 − (1 − p)2m−M

       = (1 − p)2m−M − (1 − p)m(1 + p)M−m + 1 − (1 − p)2m−M

       = 1 − (1 − p)m(1 + p)M−m
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What is, hence, the minimum  that binds this probability to be lower than a pre-set 
threshold ?

















The previous expression lets us set a desired amount of single replicas to constrain the PJF 
with , when the probabilities are uniform. However, with the assumption that a task cannot 
have more than one replica, not every desired probability threshold  can be chosen, as the 
following line shows:





For 


It is clear from the previous consideration that, in order to decrease  at will and be as 
confident as needed that a joint failure won’t occur, we should introduce more than one 
replica. Before generalizing the formula to any number of replicas, let us see a couple of 
examples with this model.


• Example 1


Suppose we have estimated a uniform fault rate of  based on the history 
of similar tasks, where on average out of  trials on a device returned a negative 
response. 

       = 1 − (1 − p)m(1 + p)⌊rm⌋−m

1 ≤ r < 2
δ

PR ≤ δ   ⇔    1 − (1 − p)m(1 + p)⌊(r − 1)m⌋ ≤ δ

                 ⇔      (1 + p)⌊(r−1)m⌋ ≥
1 − δ

(1 − p)m

                 ⇔      ⌊(r − 1)m⌋ ≥
log( 1 − δ

(1 − p)m )
log(1 + p)

                 ⇔      (r − 1)m ≥
log( 1 − δ

(1 − p)m )
log(1 + p)

                 ⇔      r ≥ 1 +
1
m

⋅
log( 1 − δ

(1 − p)m )
log(1 + p)

δ
δ

δ > 1 − (1 − p)m(1 + p)⌊(r − 1)m⌋ > 1 − (1 − p)m(1 + p)m = 1 − (1 − p2)m

1 ≤ r < 2

δ

R = 0.05 %
1  2000
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The partitioner has produced  unique tasks for . Our customer wants its 

job processed quickly and demands a PJF of at most . 


Question: How should we pick ?


Solution: According to the 2-replica model, the minimum  to satisfy the customer’s 
requirement is:





In other words,  tasks should be produced overall,  of which are 
replicas. The task assignment should then follow the rule described at the beginning 
of the section, where tasks assigned to the most faulty devices get a replica. However, 
in this case, only  tasks are left without a replica.


Question: How low can the customer go with , in the 1-replica model?


The customer can be satisfied down to 


• Example 2


The target subset of devices now has a more varied fault rate: old-generation 
smartphones have a ; new-generation smartphones are way more reliable 
with ; laptop and desktop computers are extremely stable and very rarely 
fail: ; finally, a set of devices connected with specific networks often 
encounter communication issues and therefore fail to complete their task. For the last 
set of devices, it has been observed that they fail in  cases, with a standard 
deviation of . 
Suppose that the scheduling algorithm selects the following pools over the target 
subset:  old-generation smartphones,  new-generation smartphones,  
laptop and desktop computers, and  devices with bad internet connection.


Question: How should we pick  to face the same demand of the customer ( ) 
for a job with  unique tasks?


Solution: In this case, we must use the model with heterogeneous . In addition, for 
illustrative purposes, we might either use the mean or a pseudo-random generator to 
simulate the ’s of the last set of devices. We opt for the second one.  
Using a scientific calculator, it turns out that the customer cannot be satisfied in this 

m = 10,000 j
δ = 1%

r

r

r = 1 +
1

10,000
⋅

log( 1 − 0.01

(1 − 0.0005)10,000 )
(1 + 0.0005)10,000 = 1.9985

⌊r m⌋ = 19,985 9,985

15

δ

δ = 1 − (1 − 0.00052)10,000 = 0.250%

R = 4 %
R = 0.1 %
R = 0.005 %

R = 30 %
σ = 13.4 %

700 6,800 1,600
900

r δ = 1%
m = 5000

pi

pi
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case, as  is the minimum probability achievable when . The profile of 
 functio is the following, given the other parameters as above.


As it's clear from the last example, the lower bound for  in the 1-replica model might be too 
high for certain probability configurations. 
One can reasonably comment that the previous examples employed imaginary probabilities 
and that the real ones can be way lower. 
Nonetheless, customers must be able to require any level of  regardless of the state of the 
grid. Hence, it is not sufficient to stop our analysis at the level .


Solution in , general case

The results for the 1-replica model easily generalize to the case  , 
where, following the task assignment previously defined, a total of  tasks are 
replicated  times, and the remaining  tasks have  replicas. Let’s call the PJF  
in the general case, and let’s write and simplify its expression:








 
where  and  are independent events (they involve mutually independent variables).


Let’s find  first:


26,40% r = 2
PR(r)

δ

δ
1 ≤ r < 2

R
a ≤ r < a + 1  ,   a ∈ ℕ

(a + 1)m − M
a M − am a + 1 Pa

R

Pa
R = ℙ

M−am

⋃
i=1

a+1

⋂
k=1

{Xi+(k − 1)m = 1}   ∪    
m

⋃
j=M−am+1

a

⋂
k=1

{Xi+(k − 1)m = 1}   : =

 : =   ℙ(A ∪ B) = 1 − ℙ(AC ∩ BC) = 1 − ℙ(AC)ℙ(BC)

A B

ℙ(AC)

                                                                                                                                                 45



© ByteNite Inc., 2023                                                                                           WP v2.1 — Appendix




where  is a collection of independent events, and so is the 

collection of their complementaries. Therefore:


In a similar way, it can be proven that:





The final formula is then:





Equation – The Probability of Joint Failure’s general formula, as a function of the replication coefficient 
, the number of unique tasks , and the probabilities of failure   sorted in 

descending order.


In the homogeneous assumption , and the general PJF boils down to:








ℙ(AC) = ℙ
M−am

⋂
i=1 (

a+1

⋂
k=1

{Xi+(k − 1)m = 1})
C

=                       

  { ∩a+1
k=1 {Xi+(k − 1)m = 1}}
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i=1
 

            =
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∏
i=1

ℙ(
a+1

⋂
k=1

{Xi+(k − 1)m = 1})
C

  =

            =
M−am

∏
i=1 [1 − ℙ(

a+1

⋂
k=1

{Xi+(k − 1)m = 1}) ] =

            =
M−am

∏
i=1

(1 − ∏
a+1

k=1
pi+(k − 1)m)

ℙ(BC) =
m

∏
i=M−am+1

(1 − ∏
a

k=1
pi+(k − 1)m)

Pa
R = 1 −

M−am

∏
i=1

(1 − ∏
a+1

k=1
pi+(k − 1)m) ⋅

m

∏
i=M−am+1

(1 − ∏
a

k=1
pi+(k − 1)m)

a = ⌊r⌋   ,    M = ⌊r ⋅ m⌋

r m pi,   i = 1,…, ⌊r ⋅ m⌋

pi = p

Pa
R = 1 − (1 − pa+1)M−am ⋅ (1 − pa)(a+1)m−M

       = 1 − (1 − p⌊r⌋+1)
⌊rm⌋−⌊r⌋m

⋅ (1 − p⌊r⌋)
⌊r⌋−(⌊rm⌋−⌊r⌋m)
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Finally, pooling all the models together, we can define a function of the replication coefficient 
, by simply replacing  with :





The following example shows that multiple replicas can lead to adequate values of  even 
when the fault rates are very high.


• Example 3


Suppose that the phone company XYZ, issuing a large share of the US mobile traffic, is 
experiencing a general breakdown and its users get randomly and independently 
disconnected from the network every now and then. As a consequence, the 
estimated fault rates of such devices are . 
Suppose further that the current grid is composed of the same devices as in Example 
2, namely  devices with heterogeneous probabilities of failure ranging from 

 to . In addition, we have available an unlimited number of 
devices connected through the XYZ company’s network.


Question: In a job with  unique tasks, what is the optimal replication 
coefficient  for which the constraint  is met?


Solution: When we allow multiple replicas, the probability function assumes the 
following profile:





From the picture, it is clear that the PJF is always a decreasing function of . For this 
job in particular, the highest loss in the PJF is obtained when switching from no 
replicas ( ) to one replica ( ). However, in this case, we should go beyond two 
replicas in order to achieve a constraint of . We observe that the further we 
increase , the lower the benefit from replication; indeed, the function has a negative 
exponential behavior, as it can be deducted from its expression. 
The same plot in log-scale makes the point where the constraint is met more visible:


r a ⌊r⌋

PR(r): = P⌊r⌋
R

PR

R = 35% ± 12 %

10,000
0.005% 30% ± 13.4%

m = 5000
r ≥ 1 δ = 1%

r

r = 1 r = 2
δ = 1%

r
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The optimal , computed with an iterative non-linear equation solver, is around 
. 

r
3.956822
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Contact


https://www.bytenite.com


• Phone: +1 415-723-2082


• Info & inquiries: info@bytenite.com


• CEO: fabio@bytenite.com 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ByteNite Inc.
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San Francisco, CA 94158 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